Пошаговое объяснение:
В основном используется табличный интеграл от степенной функции, да ещё от синуса.
\int\limits {x^n} \, dx = \frac{1}{n+1} x^{n+1} +C \\ \\ \int\limits {sinx} \, dx = -cosx + C
1а. f(x)=2-x
\int\limits {(2-x)} \, dx = 2* \frac{1}{0+1} x^{0+1} - \frac{1}{1+1}x^{1+1} + C = 2x - \frac{1}{2} x^2 +C
2б. f(x)=x^4 - sin x
\int\limits {(x^4 - sin x)} \, dx = \frac{1}{4+1}x^{4+1} -(-cosx) +C = \frac{1}{5} x^5+ cosx +C
2в. f(x)= 2/ x^3
\int\limits { \frac{2}{x^3} } \, dx = \int\limits { 2x^{-3} \, dx = 2* \frac{1}{-3+1} x^{-3+1} + C = -x^{-2} + C = - \frac{1}{x^2} + C
а) Поскольку проекция прямой BD_1 на плоскость ABCD — прямая BD\perp AC, то и BD_1\perp AC. Аналогично BD_1\perp AB_1 (надо рассмотреть плоскость ABB_1A_1). Значит, BD_1 перпендикулярно двум пересекающимся прямым в плоскости AB_1C, поэтому BD_1\perp AB_1C.
б) Будем считать, что ребро куба имеет длину 1. Очевидно, в обеих плоскостях лежит точка B, поэтому прямая пересечения у этих плоскостей BD_1. Опустим на нее перпендикуляры из точек A и C (они упадут в одну точку из-за равенства треугольников ABD_1 и CBD_1) Пусть их основание — точка H. Рассмотрим треугольник ACH. В нем AC= корень из 2,
AH= дробь: числитель: 2S_ABD_1, знаменатель: BD_1 конец дроби = дробь: числитель: AB умножить на AD_1, знаменатель: BD_1 конец дроби = дробь: числитель: корень из 2, знаменатель: корень из 3 конец дроби .
Напишем теперь теорему косинусов для треугольника ACH.
2= дробь: числитель: 2, знаменатель: 3 конец дроби плюс дробь: числитель: 2, знаменатель: 3 конец дроби минус дробь: числитель: 4, знаменатель: 3 конец дроби косинус \angle AHC, откуда\angle AHC=120 в степени o , а угол между плоскостями — 60 в степени o .
ответ: 60 в степени o .