Масштаб 1: 40000 показывает , что 1 см карты равен 40000 см = 400 м = 0,4 км местности . Значит расстояние между городами 24 км на карте будет равно : 24 / 0,4 = 60 см
Пусть функция определена на множестве E Пусть где . Понятно, что для любого на области от (то есть: ) выполняется . Следовательно, для , выполняется .
Получили, что для любого есть , на области которой выполняется (Проще говоря: ). Следовательно - . Что и требовалось доказать. Для нужно отдельно доказать предел .
Теперь в чём проблема самого вопроса: мы только что доказали непрерывность функции на любом подмножестве . Но! Множество натуральных чисел тоже подмножество , значит тоже непрерывна, получается - доказали что непрерывна на области определения? Известно, что тоже непрерывна на области определения, но , понятное дело, не определена на ! Потому вопрос, ИМХО, поставлен не верно (претензия не к тебе, а скорее к преподавателям твоим). Правильно задать вопрос указывая то множесто точек, которое интересует: к примеру "непрерывна на " или, "непрерывна на отрезке "... Тем более, что есть понятие "равномерная непрерывность" - свойство области, а не так, как "непрерывность" - свойство точки. Отсюда и непонимание. А то получается: спрашивают об области, а проверяют точку. Будут вопросы - пиши.
P.S. Исправил ошибки в наборе символов. Текста много :)
Рассмотрите такое решение: 1. После поднятия цены в первый раз получилось число 50х, после поднятия во второй раз - 50х², а после поднятия в третий раз - 50х³. 2. Так как х - множитель, который больше , чем 1, то, чтобы уменьшить цену на х процентов, надо домножить на выражение (1-(х-1)). То нсть число 50х³ умножаить на (1-(х-1)). 3. По условию, после уменьшения цены получилось число 69,12. Тогде получается уравнение: 50х³*(1-(х-1))=69,12, откуда х=1,2. 4. Так как множитель равен 1,2, то новая цена при повышении была (100+20)%, значит, повышение и понижение было на 20%.