Имеем многочлен 
Корнями многочлена
называют корни уравнения

Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.
Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.
Выпишем все делители свободного члена: 
Подставим
в корень уравнения и получим:

— неправда
Подставим
в корень уравнения и получим:

— неправда
Подставим
в корень уравнения и получим:

— правда
Следовательно,
— один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на
(см. вложение).
После этого исходное уравнение можно записать разложив на множители:

Решаем второе уравнение:









Рациональные корни: 
Имеем многочлен 
Корнями многочлена
называют корни уравнения

Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.
Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.
Выпишем все делители свободного члена: 
Подставим
в корень уравнения и получим:

— неправда
Подставим
в корень уравнения и получим:

— неправда
Подставим
в корень уравнения и получим:

— правда
Следовательно,
— один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на
(см. вложение).
После этого исходное уравнение можно записать разложив на множители:

Решаем второе уравнение:









Рациональные корни: 
96 * 7 + 4 * 7 = 7 * (96 + 4) = 7 * 100 = 700
57 + b + 43 + b = (b + b) + (57 + 43) = 2b + 100
89 * 6 - 9 * 6 = 6 * (89 - 9) = 6 * 80 = 480
72 * 5 + 28 * 5 = 5 * (72 + 28) = 5 * 100 = 500