Билет №1 Теоретическая часть. 1. Вопрос: Какая функция является линейной? ответ: Линейной является функция вида: f=kx+b. 2. Вопрос: Как умножить степени с одинаковыми основаниями? ответ: При умножения степеней с одинаковыми основаниями степени складываются, а основа остается прежней. Билет №2: Теоретическая часть. 1. Вопрос: Что является графиком линейной функции? Как можно построить такой график? ответ: Графиком линейной функции является ПРЯМАЯ. Что бы построить график линейной функции можно подставить поочередно два любых значения аргумента и вычислить значение функции (получить координаты двух точек) , после чего отметить эти точки на координатной плоскости и соединить их прямой. 2. Вопрос: Как разделить степени с одинаковыми основаниями? ответ: Чтобы разделить степени с одинаковыми основаниями нужно вычесть степени, а основание оставить прежним. Билет №3 Теоретическая часть. 1. Вопрос: Как найти точки пересечения графика линейной функции с осями координат: ответ: Чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции). Чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
Примеры.
1) Найти точки пересечения графика линейной функции y=kx+b с осями координат.
Решение:
В точке пересечения графика функции с осью Ox y=0:
kx+b=0, => x= -b/k. Таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0). В точке пересечения с осью Oy x=0:
y=k∙0+b=b. Отсюда, точка пересечения графика линейной функции с осью ординат — (0; b). 2. Вопрос: Как возвести степень в степень? ответ: Чтобы возвести степень в степень нужно перемножить степени. Например: P. s: Решать практическую часть не буду, т.к могу ошибиться...
Чтобы разделить отрезок на 2 равные части, нужно: 1)начертить отрезок МР 2)циркулем начертить окружность с центром в т.М радиусом, несколько бОльшим, чем предполагаемая середина отрезка 3)не изменяя расстояние циркуля,начертить окружность с центром в т.Р 4)окружности пересекутся в 2 точках. 5)через эти точки провести прямую-она разделит отрезок МР ровно пополам. Обозначим эту точку пересечения прямой и отрезка МР как точку А. разделить отрезок АР пополам по той же схеме, повторив шаги 1)-5). обозначим середину отрезка АР точкой В
разведем "ножки" циркуля на расстояние, равное отрезку МВ и "перенесем" это расстояние на числовой луч, выбрав за исходную точку начало луча-точку О. вторая "ножка" циркуля отложит на луче расстояние, равное МВ. поставим на луче в этом месте точку К расстояние ОК=МВ=3/4МР
Из этих чисел составными являются:
14 15 25 42 91