ответ:
пошаговое объяснение:
число выпадения гербов подчинено биномиальному закону с параметрами n=6, p=q=0,5.
вероятность выпадения герба k < 6 раз вычисляется по формуле бернулли
p(k)=(с из 6 по k)•p^k•q^(n-k).
менее двух раз это ноль или один раз, поэтому
p(k < 2)=p(0)+p(1).
p(0)= (с из 6 по 0)•0,5^6=0,015625;
p(1)= (с из 6 по 1)•0,5^6=6•0,015625= 0,09375.
p(k < 2)=p(0)+p(1)= 0,109375.
не менее двух раз это противоположное событие тому, что герб выпадет менее двух раз, поэтому
p(k > = 2)=1-p(k < 2)=1-0,109375=0,890625.
У одноклассников Пети может быть 0, 1, 2, ..., 28 друзей – всего 29 вариантов. Но если кто-то дружит со всеми, то у всех не меньше одного друга. Поэтому либо есть такой, кто дружит со всеми, либо есть такой, кто не дружит ни с кем. В обоих случаях остается 28 вариантов: 1, 2, ..., 28 или 0, 1, ..., 27. Обозначим того, у кого больше всего друзей через A, а того, у кого их меньше всего – через B. В первом случае A дружит со всеми, а B – только с одним человеком, то есть только с A. Во втором случае B не дружит ни с кем, а A дружит со всеми, кроме одного, то есть со всеми, кроме B. Итак, в каждом из случаев A дружит с Петей, а B – нет. Переведём A и B в другой класс. Как мы уже видели, A дружит со всеми из оставшихся, а B – ни с кем из оставшихся. Поэтому после перевода у каждого стало на одного друга меньше (среди одноклассников). Значит, у оставшихся Петиных одноклассников снова будет разное число друзей среди одноклассников. Теперь снова переведём самого "дружелюбного" и самого "нелюдимого" в другой класс и т. д. Повторяя эти рассуждения 14 раз, мы переведём в другой класс 14 пар школьников, в каждой из которых ровно один Петин друг. Итак, друзей у Пети 14
Пошаговое объяснение:
2)12+6=18 всего