М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
RedomR
RedomR
16.03.2020 04:50 •  Математика

Найти угол между прямыми y=5x+7 y=-3/2x

👇
Ответ:
TomaSharik
TomaSharik
16.03.2020
Ответ 35 y вот что (рулкдкодклурднл)
4,6(86 оценок)
Открыть все ответы
Ответ:
America555
America555
16.03.2020

12; 48

Пошаговое объяснение:

(x+4)(x^2-4x+16)-a(x+4)=0\\(x+4)(x^2-4x+16-a)=0

Уравнение обязательно имеет одно решение: x = -4. Квадратное уравнение во второй скобке может иметь 0, 1 или 2 решения. Очевидно, нужно рассматривать последние два случая.

1. Если квадратное уравнение имеет одно решение, то оно должно отличаться от x = -4, так как требуется найти два различных решения.

2. Если квадратное уравнение имеет два решения, то одно из них должно равняться x = -4.

Случай 1:  x^2-4x+16-a=0 — 1 решение.

D=16-4(16-a)=0\Leftrightarrow a=12

При a = 12 x^2-4x+4=0\Leftrightarrow x=2\neq -4 — подходит.

Случай 2: x^2-4x+16-a=0 — 2 решения, одно из них x = -4.

(-4)^2-4\cdot(-4)+16-a=48-a=0\Leftrightarrow a=48

При a = 48 x^2-4x-32=0\Leftrightarrow x=-4;8 — подходит.

4,7(69 оценок)
Ответ:
veronichkastan123
veronichkastan123
16.03.2020

1. Обратить внимание на аргументы. Здесь есть и х, и 2х.

Значит надо все аргументы свести к одному аргументу х,

применив формулу косинуса  двойного аргумента

cos2x=cos^2x-sin^2x  

Уравнение :

\sqrt{3} cosx-\sqrt{2} (cos^2x-sin^2x)+\sqrt{3} sinx=0

Разложим на множители:

(\sqrt{3} cosx+\sqrt{3} sinx)-\sqrt{2}( cos^2x-sin^2x)=0

\sqrt{3} (cosx+sinx)-\sqrt{2}( cosx-sinx)(cosx+sinx)=0

(cosx+sinx)\cdot (\sqrt{3}-\sqrt{2}( cosx-sinx))=0

Произведение двух множителей равно 0 когда хотя бы один из них равен 0:

cosx+sinx=0     или    \sqrt{3}-\sqrt{2}( cosx-sinx)=0

cosx+sinx=0  -   однородное тригонометрическое уравнение первого порядка, делим на cosx ≠0

tgx=-1

x=-\frac{\pi }{4} +\pi k, k\in Z

или

\sqrt{2}( cosx-sinx)=\sqrt{3}

Так как

cosx=sin(\frac{\pi }{2} -x)

\sqrt{2}( sin(\frac{\pi }{2} -x)-sinx)=\sqrt{3}

Применяем формулу

sinα - sinβ=

\sqrt{2}\cdot 2 sin \frac{(\frac{\pi }{2} -x)-x}{2}\cdot cos\frac{(\frac{\pi }{2} -x)+x}{2}=\sqrt{3}

\sqrt{2}\cdot 2 sin (\frac{\pi }{4} -x)\cdot cos\frac{\pi }{4}=\sqrt{3}

так как cos\frac{\pi }{4}=\frac{\sqrt{2}}{2}

\sqrt{2}\cdot 2 sin (\frac{\pi }{4} -x)\cdot \frac{\sqrt{2}}{2}=\sqrt{3}

sin (\frac{\pi }{4} -x)=\frac{\sqrt{3}}{2}   так как синус - нечетная функция, то

sin (x-\frac{\pi }{4} )=-\frac{\sqrt{3}}{2}

Общий вид решения уравнения:

x-\frac{\pi }{4} =(-1)^{k}(-\frac{\pi}{3})+ \pi k, k \in Z

Это удобнее записать в виде серии двух ответов:

k=2m                                   или    k  = 2n-1

x-\frac{\pi }{4} =-\frac{\pi}{3}+2 \pi m, m \in Z  или   x-\frac{\pi }{4} =-\frac{2\pi}{3}+2 \pi n, n \in Z

x=\frac{\pi }{4} -\frac{\pi}{3}+2 \pi m, m \in Z     или    x=\frac{\pi }{4} -\frac{2\pi}{3}+2 \pi n, n \in Z

x= -\frac{\pi}{12}+2 \pi m, m \in Z        или     x= -\frac{5\pi}{12}+2 \pi n, n \in Z

О т в е т. -\frac{\pi }{4} +\pi k, k\in Z;   -\frac{\pi}{12}+2 \pi m, m \in Z; -\frac{5\pi}{12}+2 \pi n, n \in Z

4,4(14 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ