Внимание!
В условии задачи опечатки. Одна исправлена, а вторая - нет. Запишем условие задачи правильно.
ДАНО:
1) y(x) = x+1 при х<1
2) y(x) = x² + 1 при - 1 ≤ х ≤ 1
3) y(x) = 3/(1 - x) при х > 1.
Пошаговое объяснение:
Три разных участка графика.
1) y = х +1 - прямая линия.
Построение по двум точкам, Например,
у= х + 1 = 0 получаем х = 1
х = -4 и у = -4+1 = - 3.
Важно! При Х=-1 функция не существует - точку (-1;0) изображаем в виде кольца ("дырки").
Область значений этой части функции - Е(у)∈(-∞;0)
2) y = x² + 1 - парабола поднятая на единицу вверх.
Для построения графика вычислим пять точек.
а) при х = 0 и у(0) = 1
б) при х= ±0.5 функция y= 1/4 + 1 = 1.25.
в) при х= ±1 функция у = 1 + 1 = 2.
Здесь по краям области определения она существует - ставим "точки", .
3) y = 3/(1-x) - гипербола.
Деление на 0 недопустимо. Находим область определения функции - D(y) ∈(1;+∞)
При x=1 - разрыв - вертикальная асимптота - к ней стремится линия графика.
Построение графика по нескольким точкам.
При х = 1. 1, у = 3/(-0,1) = - 30 (вне рисунка).
х = 1,5, у = 3/(-0,5) = -6.
х = 2, у = 3/(-1) = -3.
х = 3, у = - 1,5
х = 4, у = 3/(-3) = -1
х = 7, у = 3/(-6) = - 0,5
Соединяем точки плавной линией.
График функции на рисунке в приложении.
На графике видно, что имеются два разрыва.
Если точки в разрыве имеют конечные значения - это разрыв первого рода - при Х = -1. Он неустранимый, так как значения рядом с точкой х = -1 разные.
При Х = +1 - разрыв II рода - там нет значений справа от Х = 1.
Слева от х = 1 функция у = 2, а справа от х = 1 равна -∞.
№1
5 \frac{7}{8}+2 \frac{5}{12}=5 \frac{7*3}{24}+2 \frac{5*2}{24} =5 \frac{21}{24}+2 \frac{10}{24}=7 \frac{31}{24} =8 \frac{7}{24}5
8
7
+2
12
5
=5
24
7∗3
+2
24
5∗2
=5
24
21
+2
24
10
=7
24
31
=8
24
7
1 \frac{1}{9} +2 \frac{3}{5} =1 \frac{1*5}{45} +2 \frac{5*3}{45}=3 \frac{20}{45}= 3\frac{4}{9}1
9
1
+2
5
3
=1
45
1∗5
+2
45
5∗3
=3
45
20
=3
9
4
8 \frac{3}{5}+ \frac{1}{15}=8\frac{3*3}{15}+ \frac{1}{15}= 8 \frac{10}{15}= 8 \frac{2}{3}8
5
3
+
15
1
=8
15
3∗3
+
15
1
=8
15
10
=8
3
2
\frac{2}{3}+4 \frac{3}{5}= \frac{2*5}{15}+4 \frac{3*3}{15}=4 \frac{19}{15}=5 \frac{4}{15}
3
2
+4
5
3
=
15
2∗5
+4
15
3∗3
=4
15
19
=5
15
4
№2
2- \frac{5}{6}=1 \frac{6}{6}-\frac{5}{6}=1 \frac{1}{6}2−
6
5
=1
6
6
−
6
5
=1
6
1
6-5 \frac{5}{8}=5\frac{8}{8}-5\frac{5}{8}=\frac{3}{8}6−5
8
5
=5
8
8
−5
8
5
=
8
3
3,4 пример на картинке.
№3
x + 2\frac{2}{11} =5x+2
11
2
=5
x=5-2 2/11
x=4 11/11-2 2/11
x=2 9/11