Задача решается так:
1) Так как окружность описанная, то её центром служит точка пересечения серединных перпендикуляров к сторонам треугольника. пусть OD и OH - серединные перпендикуляры, O-центр окружности.EM - прямая, параллельная стороне AC.
2) Так как ΔABC - равносторонний, то <A=<B=<C=60°. Так как радиус AO-биссектриса по свойству радиуса описанной окружности, то <HAO = 60°:2 = 30°. Так как OH-серединный перпендикуляр, то рассмотрю ΔAHO,<H=90°. sin <HAO = OH/R;
sin 30° = 1/2. 1/2 = OH/2√3, откуда OH = 2√3/2 = √3
3)Теперь рассмотрю ΔOEH,<H = 90°. Поскольку EM|| AC, то <A = <HEO = 60° - соответственные.sin <HEO = OH/OE, откуда OE = OH/sin 60° = √3 : √3/2 = 2.
4)ΔEBO = ΔMBO - по катету и прилежащему к нему острому углу.
1. BO - общий
2.<ABD = <CBD - так как по св. ΔABC BD - биссектриса.
Из равенства их следует, что EM = 2OE = 2 * 2 = 4
x км/ч-cкорость пешехода
3.4x км/ч-скорость велосипедиста
за 0.25 часа пешеход км а велосипедист проехал 0.25*3.4x км
в начале между ними было 2.1 км т.е 0.25*3.4x-0.25x=2.1
0.85x-0.25x=2.1
0.6x=2.1
x=3.5км/ч пешехода а велосипедиста
3.5*3.4=11.9 км/ч
В каждом столбце найдётся цвет, в который покрашены по крайней мере две клетки этого столбца. Назовём такой цвет преобладающим для данного столбца (возможно, у какого-то столбца будет два преобладающих цвета).
Аналогично, какой-то цвет (назовем его 1) будет преобладающим для двух столбцов. Поскольку от перестановки строк и столбцов ничего не зависит, будем считать, что это столбцы a и b. Также можем считать, что в первом столбце цветом 1 покрашены клетки a4 и a5. Тогда клетки b4 и b5 должны быть покрашены какими-то двумя различными цветами, отличными от цвета 1. Пусть они покрашены цветами 2 и 3, а поскольку цвет 1 – преобладающий для столбца b, можем считать, что клетки b2 и b3 покрашены цветом 1.
Рассмотрим клетку a3. Выбрав 3-ю и 5-ю строки и столбцы a и b, мы получим, что клетка a3 не может быть покрашенной цветами 1 и 2. Аналогично, она не может быть покрашенной цветами 1 и 2 и, следовательно, покрашена цветом 4. Из аналогичных рассуждений мы получаем, что и клетка a2 покрашена цветом 4.
Значит, квадрат, состоящий из клеток a3, a2, b3 и b2, покрашен в два цвета. Противоречие.
ответ: нельзя