Дифференциальным уравнением первого порядка называется уравнение вида
F(x, y, y
′
) = 0, (0.1)
в котором x — независимая переменная, y(x) — неизвестная функция. Дифференциальным уравнением первого порядка, разрешенным относительно
производной, называется уравнение
dy
dx = f(x, y). (0.2)
Правую часть уравнения (0.2) будем считать определенной на некотором открытом множестве D плоскости (x, y). Иногда уравнение (0.2) записывают
в виде
M(x, y) dx + N(x, y) dy = 0 (0.3)
и называют уравнением первого порядка, записанным в дифференциалах.
Решением уравнения (0.2) (или (0.3)) на интервале I оси x называется
любая дифференцируемая функция y = φ(x), которая при подстановке в
уравнение обращает его в тождество на I . Общим решением уравнения (0.2)
называется множество всех его решений. Общее решение зависит от одной
произвольной постоянной C и дается формулой
y = φ(x, C). (0.4)
Выражение вида
Φ(x, y, C) = 0, (0.5)
из которого y определяется неявно как функция от x называется общим
интегралом уравнения (0.2).
Решить уравнение (0.2) означает найти его общее решение или общий интеграл. При этом предпочтение, как правило, отдается более компактной записи ответа.
Формы записи уравнения в виде (0.2) или (0.3) равносильны и из одной
записи можно получить другую. Однако, в некоторых случаях, форма записи (0.3) оказывается предпочтительнее, так как в нее переменные x и y входят симметрично. Поэтому, если независимую переменную и искомую функцию поменять местами (разрешить уравнение относительно dx
dy ), то общее решение x = ψ(y, C) полученного уравнения определит
Пошаговое объяснение:
Традиционная шахматная доска представляет собой поле 8 × 8 (всего 64) чередующихся тёмных и светлых клеток (полей).
Рассмотрим первый столбик :
первый вырезать в первом столбце первые три клетки (1,2,3);
второй вырезать в первом столбце 2, 3, 4 клетки;
третий вырезать в первом столбце 3, 4, 5 клетки;
четвертый вырезать в первом столбце 4, 5, 6 клетки;
пятый вырезать в первом столбце 5, 6, 7 клетки;
шестой вырезать в первом столбце 6, 7, 8 клетки;
Вывод: в первом столбце прямоугольник 1х3, можно вырезать шестью в шахматной доске 8 столбцов, значит существует, что бы вырезать прямоугольник 1х3 в столбцах.
рассмотрим первую строчку
первый вырезать в первой строке первые три клетки (1,2,3);
второй вырезать в первой строке 2, 3, 4 клетки;
третий вырезать в первой строке 3, 4, 5 клетки;
четвертый вырезать в первой строке 4, 5, 6 клетки;
пятый вырезать в первой строке 5, 6, 7 клетки;
шестой вырезать в первой строке 6, 7, 8 клетки.
Вывод: в первой строке прямоугольник 1х3, можно вырезать шестью в шахматной доске 8 строк, значит существует, что бы вырезать прямоугольник 1х3 в строчках.
сколькими можно вырезать из шахматной доски прямоугольник 1х3?
для этого сложим количество в столбцах и количество в строках существует вырезать прямоугольник 1х3 из шахматной доски.
ответ: Существует
1)140:4=35(км\ч)–скорость катера с сопротивлением течения реки.
2)35+3=38(км\ч)
ответ: Г, 38 км\ч– скорость катера без течения реки.