На строительство было отправлено 24000целых кирпичей по дороге разбилось3%отправленных кирпичей сколько кирпичей разбилось по дороге ? сколько было доставлено целых кирпичей
Определение. любое натуральное число, на которое делится (без остатка) данное натуральное число, называется делителем данного числа. любое натуральное число, которое делится (без остатка) на данное натуральное число, называется кратным данному числу. всякое натуральное число кратно нескольким натуральным числам, самому себе и 1 или только самому себе и 1. например: число 64 кратно числам: 2, 4, 8, 16, 32, 64 и 1. следовательно, число 64 можно записать как произведение двух или более его множителей: 2 * 32 = 64 2 * 4 * 8 = 64 4 * 16 = 64 1 * 64 = 64 число 162 кратно числам: 2. 3, 6, 9, 18, 27, 54, 81, 162, 1. следовательно, число 162 можно записать как произведение двух или больше его множителей: 2 * 81 = 162 2 * 3 * 27 = 162 3 * 54 = 162 3 * 6 * 9 = 162 6 * 27 = 162 1 * 162 = 162 9 * 18 = 162 число 37 кратно числам 37 и 1. следовательно, число 37 можно записать как произведение только двух множителей: 37 * 1 = 37 число 0 (нуль) занимает особое место в разделе чисел. нет числа, которое делилось бы на нуль, так как множитель нуль в составе произведения превращает произведение в нуль. правило. нуль не относится к натуральным числам. на нуль делить нельзя.
1) Находим первую производную функции: y' = -3x²+12x+36 Приравниваем ее к нулю: -3x²+12x+36 = 0 x₁ = -2 x₂ = 6 Вычисляем значения функции на концах отрезка f(-2) = -33 f(6) = 223 f(-3) = -20 f(3) = 142 ответ: fmin = -33, fmax = 142 2) a) 1. Находим интервалы возрастания и убывания. Первая производная равна f'(x) = - 6x+12 Находим нули функции. Для этого приравниваем производную к нулю - 6x+12 = 0 Откуда: x₁ = 2 (-∞ ;2) f'(x) > 0 функция возрастает (2; +∞) f'(x) < 0функция убывает В окрестности точки x = 2 производная функции меняет знак с (+) на (-). Следовательно, точка x = 2 - точка максимума. б) 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = -12x2+12x или f'(x) = 12x(-x+1) Находим нули функции. Для этого приравниваем производную к нулю 12x(-x+1) = 0 Откуда: x1 = 0 x2 = 1 (-∞ ;0) f'(x) < 0 функция убывает (0; 1) f'(x) > 0 функция возрастает (1; +∞) f'(x) < 0 функция убывает В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума. В окрестности точки x = 1 производная функции меняет знак с (+) на (-). Следовательно, точка x = 1 - точка максимума.
3. Исследуйте функцию с производной f(x)=2x^2-3x-1 1. D(y) = R 2. Чётность и не чётность: f(-x) = 2(-x)² - 3*(-x) - 1 = 2x² + 3x - 1 функция поменяла знак частично. Значит она ни чётная ни нечётная 3. Найдём наименьшее и наибольшее значение функции Находим первую производную функции: y' = 4x-3 Приравниваем ее к нулю: 4x-3 = 0 x₁ = 3/4 Вычисляем значения функции f(3/4) = -17/8 Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = 4 Вычисляем: y''(3/4) = 4>0 - значит точка x = 3/4 точка минимума функции. 4. Найдём промежутки возрастания и убывания функции: 1. Находим интервалы возрастания и убывания. Первая производная равна f'(x) = 4x-3 Находим нули функции. Для этого приравниваем производную к нулю 4x-3 = 0 Откуда: x₁ = 3/4 (-∞ ;3/4) f'(x) < 0 функция убывает (3/4; +∞) f'(x) > 0 функция возрастает В окрестности точки x = 3/4 производная функции меняет знак с (-) на (+). Следовательно, точка x = 3/4 - точка минимума
х-3%
х=
Тоесть,3%-720 кирпичей
100%-3%=97%-кирпичей доехало целыми
97%=24000-720=23 280-кирпичей доехало целыми