М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
polinaabramova10
polinaabramova10
23.11.2021 12:15 •  Математика

Решить в теплице 1м2 снимают 30 кг огурцов сколько кг огурцов при такой урожайности можно вырастить в теплице на двух грядках прямоугольной формы длиной 10 м и шириной 1 м каждая . ришить

👇
Ответ:
napokinnuu
napokinnuu
23.11.2021
10*1=10м2 - площадь 1 грядки
10+10=20м2 - площадь 2 грядок
20*30=600 кг - огурцов с 2 грядок
ответ: 600 кг огурцов
4,6(98 оценок)
Открыть все ответы
Ответ:
chicheviup00zou
chicheviup00zou
23.11.2021

Всего возможны две ситуации: из конверта в конверт будет переложена простая задача или задача повышенной сложности.

Рассмотрим случай, когда будет переложена простая задача.

Найдем вероятность того, что из первого конверта во второй будет переложена простая задача. Для этого разделим число простых задач на общее количество задач в первом конверте:

P(A)=\dfrac{6}{6+6}= \dfrac{6}{12}= \dfrac{1}{2}

После такого перекладывания во втором конверте окажется 5 простых задач и 8 задач повышенной сложности. Достать из такого конверта простую задачу можно с вероятностью:

P(B)=\dfrac{5}{5+8}= \dfrac{5}{13}

Но такой конверт получается только с вероятностью P(A)=\dfrac{1}{2}. Значит итоговая вероятность достать простую задачу при условии, что переложена была простая задача равна:

P_A(B)=P(A)\cdot P(B)=\dfrac{1}{2}\cdot\dfrac{5}{13}=\dfrac{5}{26}

Рассмотрим случай, когда будет переложена задача повышенной сложности.

Найдем вероятность того, что из первого конверта во второй будет переложена задача повышенной сложности:

P(C)=\dfrac{6}{6+6}= \dfrac{6}{12}= \dfrac{1}{2}

После такого перекладывания во втором конверте окажется 4 простые задачи и 9 задач повышенной сложности. Достать из такого конверта простую задачу можно с вероятностью:

P(D)=\dfrac{4}{4+9}= \dfrac{4}{13}

Но такой конверт получается только с вероятностью P(C)=\dfrac{1}{2}. Значит итоговая вероятность достать простую задачу при условии, что переложена была простая задача равна:

P_C(D)=P(C)\cdot P(D)=\dfrac{1}{2}\cdot\dfrac{4}{13}=\dfrac{4}{26}

Поскольку события "переложить простую задачу" и "переложить задачу повышенной сложность" - несовместные, то общая вероятность достать простую задачу:

P(E)=P_A(B)+P_C(D)=\dfrac{5}{26}+\dfrac{4}{26}=\dfrac{9}{26}

ответ: 9/26

4,6(48 оценок)
Ответ:
mtoropchin
mtoropchin
23.11.2021

В точке х=5 функция принимает наименьшее значение -1

Пошаговое объяснение:

Сначала найдем значения функции на концах отрезка

f(4)=(4-6)*e^{4-5}=-\frac{2}{e}

f(6)=(6-6)*e^{6-5}=0

Теперь исследуем функцию на наличие экстремума в пределах отрезка.

Найдем ее производную, как производную произведения

f'(x)=e^{x-5}+(x-6)e^{x-5}=e^{x-5}(x-5)

Приравниваем производную к нулю

e^{x-5}(x-5)=0

Показательная функция не может быть равна нулю, поэтому нулю равна скобка, т.е. х=5 - локальный экстремум. Исследуем как меняется знак производной в этой точке

f'(4)=e^{4-5}(4-5)=-\frac{1}{e} - функция убывает

f'(6)=e^{6-5}(6-5)=e - функция возрастает, значит точка х=5 - точка минимума функции. Значение функции в этой точке

f(5)=(5-6)e^{5-5}=-1

Из всех трех значений, именно это наименьшее. Значит функция принимает наименьшее значение -1 в точке x=5. Подкреплю свои расчеты графиком.


15) Найдите наименьшее значение функции на отрезке [4;6]
4,4(52 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ