На каждой клетке доски размером 9×9 сидит жук, По свистку каждый из жуков переползает в одну из соседних по диагонали клеток. При этом в некоторых клетках может оказаться больше одного жука, а некоторые клетки окажутся незанятыми.
Докажите, что при этом незанятых клеток будет не меньше 9.На клетчатой бумаге даны произвольные n клеток. Докажите, что из них можно выбрать не менее n/4 клеток, не имеющих общих точекПлоскость раскрашена в три цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.В левый нижний угол шахматной доски 8×8 поставлено в форме квадрата 3×3 девять фишек. Фишка может прыгать на свободное поле через рядом стоящую фишку, то есть симметрично отражаться относительно её центра (прыгать можно по вертикали, горизонтали и диагонали). Можно ли за некоторое количество таких ходов поставить все фишки вновь в форме квадрата 3×3, но в другом углу:
а) левом верхнем,
б) правом верхнем?
Памойму правильно если не правильно зделайте отметить нарушения.
Задание № 5 - ответ: ∠1 = 70°; ∠2 = 110°; ∠ 3 = 70°; ∠4 = 110°.
Задание № 6 - ответ: d₁ = 18 см; d₂ = 18 cм.
Пошаговое объяснение:
Задание 5.
Сумма внутренних углов параллелограмма равна 360°.
Поэтому если сумма двух углов равна 140°, то сумма двух других углов равна:
360 - 140 = 220°.
Противоположные углы параллелограмма попарно равны.
Следовательно:
∠1 = ∠ 3 = 140 : 2 = 70°;
∠2 = ∠4 = 220 : 2 = 110°.
ответ: ∠1 = 70°; ∠2 = 110°; ∠ 3 = 70°; ∠4 = 110°.
Задание № 6.
Так как сторона 9 см образует с диагональю ∠60°, то это значит, что в прямоугольном треугольнике, образованном сторонами прямоугольника и его диагональю, третий угол равен 30° (180 - 90 - 60 = 30), а сторона 9 см лежит напротив угла 30 °, а значит равна половине гипотенузы треугольника, которая и есть диагональ прямоугольника.
Таким образом, диагональ прямоугольника равна:
d₁ = 9 * 2 = 18 см.
В прямоугольнике диагонали равны между собой, следовательно, вторая диагональ равна:
d₂ = d₁ = 18 cм.
ответ: d₁ = 18 см; d₂ = 18 cм.
24:8 = 3
35+3=38