Имеем неопределённость оо - оо (бесконечность минус бесконечность). Умножим и разделим исходное выражение на sqrt(x^2+1)+sqrt(x^2-1). Получим такое выражение: [sqrt(x^2+1) - sqrt(x^2-1)]*[sqrt(x^2+1) + sqrt(x^2-1)]/[sqrt(x^2+1) + sqrt(x^2-1)] В числителе имеем разложение разности квадратов на множители, знаменатель так и оставляем: [(sqrt(x^2+1))^2 - (sqrt(x^2-1))^2]/[sqrt(x^2+1) + sqrt(x^2-1)] В числителе производим упрощения: (sqrt(x^2+1))^2 - (sqrt(x^2-1))^2= x^2 + 1 -x^2 +1 = 2 Знаменатель вновь без изменений. После этого исходное выражение выглядит так: 2/(sqrt(x^2+1) + sqrt(x^2-1)) Вот теперь можно вместо икса подставлять бесконечность. В знаменателе получится оо + оо = оо. Сумма бесконечностей равна бесконечности. А вот разница может оказаться любой. Наконец, нам осталось разделить 2 на оо, а это будет нуль. ответ: lim = 0
4 32 кг
6 ? кг
Решение
32 :4=8кг нужно лошади на 1 день
8*6=48 кг нужно на 6 дней