М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
KsushaGromova
KsushaGromova
16.03.2022 05:27 •  Математика

6класса , если можно с объяснением . представьте дробь 2/3 : в виде двух дробей со знаменателем 3 ; 9; 12 .

👇
Ответ:
mashoklomakina
mashoklomakina
16.03.2022
Основное свойство дроби: если умножить или разделить числитель и знаменатель на одно и тоже число, то значение этой дроби не изменится
1) у дроби 2/3 итак знаменатель равен 3
2) чтобы получить знаменатель 9, надо числитель и знаменатель дроби 2/3 умножить на 3 и получим 6/9
3) по аналогии 2/3 = (2х4) /(2х4)=8/12
4,4(11 оценок)
Открыть все ответы
Ответ:
debdh
debdh
16.03.2022

ответ: 26; 15; 64;250;24

Пошаговое объяснение:

Делаем задания через определенные интегралы и первообразные:

1.

F(x) = \int{3x^2} \, dx = \frac{x^3}{3} *3+C = x^3 +C

Подставляем в первообразную границы интегрирования:

\int\limits^3_1 {3x^2} \, dx = F(3) - F(1) = 26

2.

F(x) = \int{6x} \, dx = \frac{x^2}{2} *6+C = 3x^2 +C

Подставляем в первообразную границы интегрирования:

\int\limits^3_2 {6x} \, dx = F(3) - F(2) = 15

3.

F(x) = \int{8x} \, dx = \frac{x^2}{2} *8+C = 4x^2 +C

Подставляем в первообразную границы интегрирования:

\int\limits^4_0 {8x} \, dx = F(4) - F(0) = 64

4.

Производим ровно те же операции, что и до этого, так как требуется найти путь у параболы ветвями вверх => интеграл не будет отрицательным.

F(x) = \int{6x^2} \, dx = \frac{x^3}{3} *6+C = 2x^3 +C

Подставляем в первообразную границы интегрирования:

\int\limits^5_0 {6x^2} \, dx = F(5) - F(0) = 250

5.

Находим первообразную заданной функции:

F(x) = \int{2x+5} \, dx = \int{2x} \, dx + \int{5} \, dx= \frac{x^2}{2} *2 + 5x +C = x^2 + 5x+C

Ограничивающие прямые - те же границы интегрирования:

\int\limits^3_0 {2x+5} \, dx = F(3) - F(0) = 24

4,5(93 оценок)
Ответ:
emasihinp08dbq
emasihinp08dbq
16.03.2022

ответ: 26; 15; 64;250;24

Пошаговое объяснение:

Делаем задания через определенные интегралы и первообразные:

1.

F(x) = \int{3x^2} \, dx = \frac{x^3}{3} *3+C = x^3 +C

Подставляем в первообразную границы интегрирования:

\int\limits^3_1 {3x^2} \, dx = F(3) - F(1) = 26

2.

F(x) = \int{6x} \, dx = \frac{x^2}{2} *6+C = 3x^2 +C

Подставляем в первообразную границы интегрирования:

\int\limits^3_2 {6x} \, dx = F(3) - F(2) = 15

3.

F(x) = \int{8x} \, dx = \frac{x^2}{2} *8+C = 4x^2 +C

Подставляем в первообразную границы интегрирования:

\int\limits^4_0 {8x} \, dx = F(4) - F(0) = 64

4.

Производим ровно те же операции, что и до этого, так как требуется найти путь у параболы ветвями вверх => интеграл не будет отрицательным.

F(x) = \int{6x^2} \, dx = \frac{x^3}{3} *6+C = 2x^3 +C

Подставляем в первообразную границы интегрирования:

\int\limits^5_0 {6x^2} \, dx = F(5) - F(0) = 250

5.

Находим первообразную заданной функции:

F(x) = \int{2x+5} \, dx = \int{2x} \, dx + \int{5} \, dx= \frac{x^2}{2} *2 + 5x +C = x^2 + 5x+C

Ограничивающие прямые - те же границы интегрирования:

\int\limits^3_0 {2x+5} \, dx = F(3) - F(0) = 24

4,5(51 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ