Приведем данную гиперболу к каноническому виду: 2x^2-9y^2=18 x^2/9-y^2/2=1 x^2/3^2-y^2/(sqrt(2))^2=1 (примечание: sqrt - квадратный корень) Найдем вершины гиперболы: y=0 x^2/9=1 x^2=9 x1=3 x2=-3 точки (-3;0) и (3;0) - вершины гиперболы Найдем уравнение окружности, проходящей через точки (-3;0), (3;0) с центром в точке А(0;4): уравнение окружности с центром в точке (0;0) имеет вид x^2+y^2=R^2 (R - радиус окружности) центр заданной окружности смещен вдоль оси y вверх на 4, т.к. точка А имеет координаты (0;4): x^2+(y+4)^2=R^2 По теореме Пифагора найдем радиус окружности: R=sqrt((3-0)^2+(4-0)^2)=sqrt(9+16)=sqrt(25)=5
Приведем данную гиперболу к каноническому виду: 2x^2-9y^2=18 x^2/9-y^2/2=1 x^2/3^2-y^2/(sqrt(2))^2=1 (примечание: sqrt - квадратный корень) Найдем вершины гиперболы: y=0 x^2/9=1 x^2=9 x1=3 x2=-3 точки (-3;0) и (3;0) - вершины гиперболы Найдем уравнение окружности, проходящей через точки (-3;0), (3;0) с центром в точке А(0;4): уравнение окружности с центром в точке (0;0) имеет вид x^2+y^2=R^2 (R - радиус окружности) центр заданной окружности смещен вдоль оси y вверх на 4, т.к. точка А имеет координаты (0;4): x^2+(y+4)^2=R^2 По теореме Пифагора найдем радиус окружности: R=sqrt((3-0)^2+(4-0)^2)=sqrt(9+16)=sqrt(25)=5
х=225*15
х=3375
проверка: 3375:15=225; 225=225
29*(145-6х)=203
4205-174х=203
4205-203=174х
4002=174х
х=4002:174
х=23
104у-12=1132
104у=1144
у=1144:104
у=11
n580*40m=23.200mn
23.200nm=23.200mn
23.200=23.200