Пошаговое объяснение:
Разложим данный многочлен на множители
a³+3a²+2a=a(a²+3a+2)=a(a+1)(a+2)
a²+3a+2=(a+1)(a+2)
D=3²-4*1*2=9-8=1
a₁=(-3+1)/2=-2/2=-1
a₂=(-3-1)/2=-4/2=-2
В итоге, мы получили произведение трёх подряд идущих чисел, среди которых обязательно найдётся хотя бы одно чётное число и число делящееся на три. Следовательно, произведение трёх подряд идущих чисел будет кратно 6. Т.к. итоговое произведение получено из исходного многочлена путём равносильных преобразований, то делаем вывод:
многочлен а³+3а²+2а кратен числу 6.
w
Пошаговое объяснение:
Разложим данный многочлен на множители
a³+3a²+2a=a(a²+3a+2)=a(a+1)(a+2)
a²+3a+2=(a+1)(a+2)
D=3²-4*1*2=9-8=1
a₁=(-3+1)/2=-2/2=-1
a₂=(-3-1)/2=-4/2=-2
В итоге, мы получили произведение трёх подряд идущих чисел, среди которых обязательно найдётся хотя бы одно чётное число и число делящееся на три. Следовательно, произведение трёх подряд идущих чисел будет кратно 6. Т.к. итоговое произведение получено из исходного многочлена путём равносильных преобразований, то делаем вывод:
многочлен а³+3а²+2а кратен числу 6.
1.12x^2-7x+1<0
2.3x^2+x-4>0
3.4x^2-5x>0
4.x(2x-7)<0
x<0, x>1¼,x1=-1⅓, x2=1,a=3>0, D=49>0,12x^2-7x+1<0x<-1⅓, x>1,3x^2+x-4>0x1=0, x2=3½,12x^2-7x+1=03x^2+x-4=0x∈(-∞;-1⅓)U(1;+∞)1/2<x<2/3,4x^2-5x=0x∈(½;⅔)