Одним з відомих нам прикладів такого розкладання є розподільна властивість множення a(b + с) = ab + ас, якщо її записати у зворотному порядку: аb + ас – a(b + с). Це означає, що многочлен аb + ас розклали на два множники а і b + с.
Під час розкладання на множники многочленів із цілими коефіцієнтами множник, який виносять за дужки, обирають так, щоб члени многочлена, який залишиться в дужках, не мали спільного буквеного множника, а модулі їх коефіцієнтів не мали спільних дільників.
Розглянемо кілька прикладів.
Приклад 1. Розкласти вираз на множники:
1) 8m + 4;
2) at + 7ар;
3) 15а3b – 10а2b2.
Р о з в’ я з а н н я.
1)
Спільним множником є число 4, тому
8m + 4 = 4 . 2m + 4 ∙ 1 = 4(2m + 1).
2) Спільним множником є змінна а, тому
At + 7ap = a(t + 7p).
3) У даному випадку спільним числовим множником є найбільший спільний дільник чисел 10 і 15 – число 5, а спільним буквеним множником є одночлен а2b. Отже,
15а3b – 10а2b2 = 5а2b ∙ 3а – 5a2b ∙ b = 5а2b(3а – 2b).
Приклад 2. Розкласти па множники:
1) 2m(b – с) + 3р(b – с);
2) х(у – t) + c(t – у).
Р о з в ‘ я з а н н я.
1) У даному випадку спільним множником є двочлен b = c.
Отже, 2m(B – С) + 3р(B – C) = (b – с)(2m + 3р).
2) Доданки мають множники у – t і t – у, які є протилежними виразами. Тому в другому доданку винесемо за дужки множник -1, одержимо: c(t – у) = – с(у – t).
Отже, х(у – t) + c(t – у) = х(у – t) – с(у – t) = (у – t) (х – с).
Предположим, что х - часть массы клея,
тогда воды в клее будет - 11х, спирта - 5х и казеина - 4х.
Масса воды больше массы спирта на 60 г,
согласно этим данным составляем уравнение:
11х-5х=60г
6х=60
х=60:6
х=10 (г)
Воды будет 110 г, спирта - 50 г, казеина - 40 г
Клея будет 110+50+40=200г.
ответ:200г
1) 11-5=6 (частей) - разница.
2) 60:6=10 (г) - I часть.
3) 11+5+4=20 (частей) - всего.
4) 20·10=200 (г) - клея получится.
ответ: 200 г