1) 3cos2a−4sin2a=3cos2a−4(1−cos2a)=7cos2a−4T.k. −1≤cos a≤1, mo 0≤cos2a≤1 =>−4≤7cos2a−4≤3
-4 - наименьшее значение
3 - наибольшее значение.
\begin{lgathered}2)\ 2sin^2a +3tg\ a*ctg\ a =2sin^2a +3\\ T.k.\ -1 \leq sin\ a \leq 1,\ mo\ 0 \leq sin^2a \leq 1\ => \\ 3 \leq 2sin^2a+3 \leq 5\end{lgathered}2) 2sin2a+3tg a∗ctg a=2sin2a+3T.k. −1≤sin a≤1, mo 0≤sin2a≤1 =>3≤2sin2a+3≤5
3 - наименьшее значение
5 - наибольшее значение.
\begin{lgathered}3)\ 3cos^2a-4sin\ a=3(1-sin^2a)-4sin\ a=-3sin^2a-4sin\ a+3 \\ \Pi ycmb\ sin\ a=t,\ -1 \leq t \leq 1\ =>\\ f(t)=-3t^2-4t+3,\ t \in [-1;1]\\ f'(t)=-6t-4\\ f'(t)=0\ => -6t-4=0\ npu\ t=-\frac{2}{3}\\ f(-\frac{2}{3})=-3(-\frac{2}{3})^2-4(-\frac{2}{3})+3=4\frac{1}{3}\end{lgathered}3) 3cos2a−4sin a=3(1−sin2a)−4sin a=−3sin2a−4sin a+3Πycmb sin a=t, −1≤t≤1 =>f(t)=−3t2−4t+3, t∈[−1;1]f′(t)=−6t−4f′(t)=0 =>−6t−4=0 npu t=−32f(−32)=−3(−32)2−4(−32)+3=431
\begin{lgathered}f(-1)=-3(-1)^2-4(-1)+3=2\\ f(1)=-3*1^2-4*1+3=-4\end{lgathered}f(−1)=−3(−1)2−4(−1)+3=2f(1)=−3∗12−4∗1+3=−4
-4 - наименьшее значение
4\frac{1}{3}431 - наибольшее значение.
ответ: Шаг 1: находим координаты х точек перечечения графиков y=x^2+1 и y=-x+3.
x^2+1 = -x+3; x^2+x-2 = 0; x1 = -2; x2 = 1.
Шаг 2: Находим определенный интеграл функции y = -x+3 в пределах от -2 до 1.
Первообразная этой функции будет Y = -1/2*x^2 + 3x + С
Подставляя пределы интегрирования получаем площадь под функцией S1 = -1/2 + 3 + 2 + 6 = 10,5.
Шаг 3: Находим определенный интеграл функции y = x^2+1 в пределах от -2 до 1.
Первообразная этой функции будет Y = 1/3*x^3 + x + С
Подставляя пределы интегрирования получаем площадь под функцией S2 = 1/3 + 1 + 8/3 +2 = 6.
Шаг 4: S = S1-S2; S = 10,5-6; S = 4,5.
Пошаговое объяснение:
вот решение полностью