Построй квадрат, периметр которого равен 24 см. Вычисли площадь этого квадрата. Какими могут быть длина и ширина прямоугольника с такой же площадью?
Формула периметра квадрата:
P = 4a , где а - сторона квадрата.
Тогда:
4a = 24
a = 24 : 4
a = 6 (см)
Формула площади квадрата:
S = a²
S = 6² = 36 (см²)
Формула площади прямоугольника:
S = a * b, где а и b не параллельные стороны фигуры.
Найдем все целочисленные значения а и b, при которых площадь будет равна 36 см² методов подбора:
1 см и 36 см
2 см и 18 см
3 см и 12 см
4 см и 9 см
9 см и 4 см
12 см и 3 см
18 см и 2 см
36 см и 1 см
у=12х²-х-1
нужна ордината вершины параболы, это будет минимум функции, а достигается он в точке минимума, т.е. в абсциссе вершины параболы, и равна эта точка x₀=-b/2a=1/24, тогда минимум равен 12/24²-1/24-1=
1/48-1/24-1=(1-2-48)/48-49/48=-1 1/48
Максимума у функции нет. т.к. при х∈(-∞; 1/24] функция убывает, а при х∈[1/24;+∞) она возрастает
точка, в которой происходит изменение убывания на возрастание - это точка минимума.
Можно было и через производную. она равна 24х-1, приравняли к нулю, нашли критическую точку. это х=1/24, а дальше
1/24
- +
при переходе через критическую точку производная меняет знак с минуса на плюс, т.е. х=1/24- точка минимума. Подставляя ее в уравнение функции, получим минимум.
у=12/24²-1/24-1=-1 1/48
3+2+5=10(частей)- всего
дальше...
1600:10=160(грамм)- в 1-ой части
2×160=320(грамм)- ирисок
ОТВЕТ: В смеси 320 грамм ирисок.