3
Пошаговое объяснение:
S=1/2+3/2²+5/2³+...+(2n - 3)/2ⁿ⁻¹+(2n - 1)/2ⁿ
2S=2(1/2+3/2²+5/2³+...+(2n - 1)/2ⁿ)=1+3/2+5/2²+...+(2n - 3)/2ⁿ⁻²+(2n - 1)/2ⁿ⁻¹
2S-S=(1+3/2+5/2²+...+(2n - 3)/2ⁿ⁻²+(2n - 1)/2ⁿ⁻¹)-(1/2+3/2²+5/2³+...+(2n - 3)/2ⁿ⁻¹+(2n - 1)/2ⁿ)
S=1+(3/2-1/2)+(5/2²-3/2²)+...+((2n - 1)/2ⁿ⁻¹-(2n - 3)/2ⁿ⁻¹)-(2n - 1)/2ⁿ=
=1+1+1/2+1/2²+1/2³+1/2⁴+...+1/2ⁿ⁻²-(2n - 1)/2ⁿ=
=1-(2n - 1)/2ⁿ+ (1+1/2+1/2²+1/2³+1/2⁴+...+1/2ⁿ⁻²)=1-(2n - 1)/2ⁿ+1·(1-(1/2)ⁿ⁻¹)/(1-1/2)=
=1-(2n - 1)/2ⁿ+2(1-1/2ⁿ⁻¹)=1-2n/2ⁿ+1/2ⁿ+2-1/2ⁿ⁻²=3-2n/2ⁿ-3/2ⁿ=3-(2n+3)/2ⁿ
Если последовательность бесконечная, то
S=1/2+3/2²+5/2³+...+(2n - 3)/2ⁿ⁻¹+(2n - 1)/2ⁿ+...=lim(n-->∞)[3-(2n+3)/2ⁿ]=3
Вычислим предел lim(n-->∞)[3-(2n+3)/2ⁿ]
lim(n-->∞)[3]-lim(n-->∞)[(2n+3)/2ⁿ]=3-lim(n-->∞)[(2n+3)/2ⁿ]
lim(n-->∞)[(2n+3)/2ⁿ] числитель и знаменатель дроби стремятся к ∞
Применим правило Лопиталя
Производная числителя 2
Производная знаменателя 2ⁿln2
lim(n-->∞)[(2n+3)/2ⁿ]=lim(n-->∞)[(2/(2ⁿln2)]=0
P.S.
Данным можно вычислить любую конечную последовательность вида:
S=a(1)·b(1)+a(2)·b(2)+a(3)·b(3)+...+a(n)·b(n)
Где числа a(1);a(2);a(3);..;a(n)-последовательные члены арифметической, а числа b(1);b(2);b(3);..;b(n)-геометрической прогрессии
Пошаговое объяснение: Чтобы проверить, проходит ли график прямой y = 1,6x - 2 через данные точки, надо подставить координаты точек в это уравнение и проверить его верность. Если получим верное равенство, то график проходит через данную точку, а если получим не верное равенство, то данная точка не принадлежит этой прямой.
1) А(1; -0,4); x = 1, y = -0,4;
-0,4 = 1,6 * 1 - 2;
-0,4 = 1,6 - 2;
-0,4 = -0,4 - верно, точка А принадлежит графику.
2) B(2; 0,6); x = 2, y = 0,6;
0,6 = 1,6 * 2 - 2;
0,6 = 3,2 - 2;
0,6 = 1,2 - не верно, В не принадлежит графику.
3) С(5; 6); x = 5, y = 6;
6 = 1,6 * 5 - 2;
6 = 8 - 2;
6 = 6 - верно, прямая проходит через точку С.
4) D(-1,5; -3); x = -1,5, y = -3;
-3 = 1,6 * (-1,5) - 2;
-3 = -2,4 - 2;
-3 = -4,4 - не верно, прямая не проходит через D.
ответ. График проходит через точки А и D.
36*184+36*816=36*1000=36000