М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
2806171
2806171
11.04.2022 18:03 •  Математика

Впрямоугольной трапеции больший из углов больше меньшего на 40 градусов. найдите градусную меру большего угла этой трапеции.

👇
Ответ:
anastasiaruabenko
anastasiaruabenko
11.04.2022
Всего в трапеции 360 град. Из них 2 прямых.
360=90*2=180 град.
Остальные 2 угла - это
х+(х+40)=180
2х+40=180
х=70
х+40=70+40=110
4,8(48 оценок)
Открыть все ответы
Ответ:
208дитма802
208дитма802
11.04.2022

Пошаговое объяснение:

сначала упростим общий вид членов ряда

\displaystyle \frac{n!(n+1)}{2^n*n!} =\frac{n+1}{2^n}

(это можно сделать, пользуясь свойствами пределов - получим равнозначный ряд)

теперь применим ризнак Даламбера

\displaystyle \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = q

при q < 1 - ряд сходится, q > 1 - ряд расходится, q = 1 - неопределенность (дополнительные исследования)

у нас

при q < 1 - ряд сходится, q > 1 - ряд расходится, q = 1 - получаем неопределенность (дополнительные исследования)

у нас

\displaystyle \lim_{n \to \infty} \bigg (\frac{n+2}{2^{n+1}} :\frac{n+1}{2^n} \bigg )=\frac{n+2}{2n+2} =\frac{1}{2}

q < 1 - ряд сходится

( можно было и сразу "в лоб" применять признак Даламбера не упрощая формулу - результат был бы тот же...)

4,7(21 оценок)
Ответ:
Dashakaef
Dashakaef
11.04.2022

Пошаговое объяснение:

сначала упростим общий вид членов ряда

\displaystyle \frac{n!(n+1)}{2^n*n!} =\frac{n+1}{2^n}

(это можно сделать, пользуясь свойствами пределов - получим равнозначный ряд)

теперь применим ризнак Даламбера

\displaystyle \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = q

при q < 1 - ряд сходится, q > 1 - ряд расходится, q = 1 - неопределенность (дополнительные исследования)

у нас

при q < 1 - ряд сходится, q > 1 - ряд расходится, q = 1 - получаем неопределенность (дополнительные исследования)

у нас

\displaystyle \lim_{n \to \infty} \bigg (\frac{n+2}{2^{n+1}} :\frac{n+1}{2^n} \bigg )=\frac{n+2}{2n+2} =\frac{1}{2}

q < 1 - ряд сходится

( можно было и сразу "в лоб" применять признак Даламбера не упрощая формулу - результат был бы тот же...)

4,7(17 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ