Задачи на принцип Дирихле решаются так, что все элементы надо разложить по ящикам. Среди шести любых различных чисел найдутся по крайней мере два числа, которые при делении на 5 дают одинаковые остатки. При делении на 5 получаются остатки: 0 1 2 3 4 Это и есть ящики. Если все шесть чисел дают разные остатки, то поместив их в пять ящиков, шестое число мы вынуждены будем положить в один из имеющихся ящиков. Таким образом, найдутся два числа которые при делении на 5 дадут одинаковые остатки. Обозначим их (5k+m) и (5n+m) Тогда их разность (5k+m)-(5n+m)=5k-5n=5(k-n) - кратна 5
Рассмотрим четырехугольник MBKD. В нем два противоположных угла прямые по условию, а угол МDК равен 60 гр. Можно легко найти угол АВС. Он равен 120 гр . Следовательно находим уголы А и С параллелограмма. Они равны 60 гр. Рассмотрим треугольник DКС - он прямоугольный по условию, и угол С равен 60 гр. Следовательно угол СDК равен 30 гр. КС есть катет, лежащий против угла в 30 гр., следовательно он равен половине гипотенузы, т.е. СD. Таким образом мы находим вторую сторону параллелограмма 2V3/2=V3 (V - знак корня). У нас есть две стороны параллелограмма ВС=4V3+2V3=6V3 и СD=V3 и угол между ними, равный 60 гр. Площадь параллелограмма равна произведению сторон на синус угла между ними. Найдем площадь, зная, что sin60=V3/2. S=6V3*V3*V3/2=9V3.
Среди шести любых различных чисел найдутся по крайней мере два числа, которые при делении на 5 дают одинаковые остатки.
При делении на 5 получаются остатки:
0
1
2
3
4
Это и есть ящики. Если все шесть чисел дают разные остатки, то поместив их в пять ящиков, шестое число мы вынуждены будем положить в один из имеющихся ящиков.
Таким образом, найдутся два числа которые при делении на 5 дадут одинаковые остатки.
Обозначим их (5k+m) и (5n+m)
Тогда их разность
(5k+m)-(5n+m)=5k-5n=5(k-n) - кратна 5