15 ед. изм.³
Объяснение:
Условие задачи.
Дано два цилиндра. Объем первого цилиндра равен 80. У второго цилиндра высота в 3 раза больше, а радиус основания в 4 раза меньше, чем у первого.Найдите объем второго цилиндра.
Решение.
1) Пусть V₁ =πR²*H = 80 - объём первого цилиндра, где R - радиус его основания, а H - высота;
тогда V₂ =π(R/4)²*(H*3) = πR²*H * (3/16) - объём второго цилиндра.
2) Так как объём второго цилиндра составляет 3/16 от объёма первого цилиндра, то этот объём равен:
80 * 3/16 = 5 * 3 = 15 единиц измерения³.
ответ: 15 ед. изм.³
ответ: АК=6см
Объяснение: так как АВ и АС - касательные, то радиусы ВО и СО проведённые к касательным образуют с ними прямой угол, поэтому ∆АОВ=∆АОС и они являются прямоугольными, в которых касательные и радиусы являются катетами а АО общей гипотенузой. Касательные АВ и АС пересекаясь в точке А равны от вершины А до точки касания, поэтому АВ=АС. Угол ВОС=120°, а прямая АО делит его пополам, поэтому <АОВ=<АОС=120÷2=60°.
Поскольку ∆АОВ прямоугольный, то сумма острых его углов составляет 90°, поэтому <ВАО=90–60=30°. Катет ВО, лежащий напротив этого угла 30° равен половине гипотенузы, поэтому АО будет в 2 раза больше чем ВО: АО=6×2=12см
Прямая АО состоит и радиуса КО и отрезка АК, который нам нужно найти. КО также является радиусом, поэтому АК=АО–КО=12–6=6см