9%
Пошаговое объяснение:
Итак, у нас есть 2 станка, отказывающие с вероятностями p1 и p2 соответственно.
Событие X0 = (0 станков отказали) = (Все станки работают). Его можно записать как произведение событий X0=
¯
A1
⋅
¯
A2
, поэтому вероятность
P(X0)=P(
¯
A1
⋅
¯
A2
)=P(
¯
A1
)⋅P(
¯
A2
)=q1⋅q2.(1)
Событие X1 = (1 станок отказал). Подумаем, когда такое событие произойдет:
1. Когда первый станок откажет (событие A1) и одновременно с этим второй станок работает (событие
¯
A2
), то есть получили произведение событий A1⋅
¯
A2
.
2. Когда второй станок откажет (событие A2) и одновременно с этим первый станок работает (событие
¯
A1
), то есть получили произведение событий
¯
A1
⋅A2.
Так как других вариантов нет, а эти два варианта - несовместные (они не могут произойти одновроменно, или первая ситуация, или вторая), то по теореме сложения вероятностей несовместных событий:
P(X1)=P(A1⋅
¯
A2
+
¯
A1
⋅A2)=P(A1⋅
¯
A2
)+P(
¯
A1
⋅A2)=
дальше уже по известной теореме умножения вероятностей раскрываем скобки:
=P(A1)⋅(
¯
A2
)+P(
¯
A1
)⋅P(A2)=p1⋅q2+q1⋅p2.
Мы получили формулу, позволяющую найти вероятность в точности одного отказавшего станка из двух:
P(X1)=p1⋅q2+q1⋅p2.(2)
Событие X2 = (2 станка отказали). Его можно записать как произведение событий X2=A1⋅A2, поэтому вероятность
P(X2)=P(A1⋅A2)=P(A1)⋅P(A2)=p1⋅p2.(3)
Теория: случай 3 станков
Быстренько обобщим наши формулы для случая 3 станков, отказывающих с вероятностями p1, p2 и p3.
Ни один станок не отказал:
P(X0)=P(
¯
A1
⋅
¯
A2
⋅
¯
A3
)=P(
¯
A1
)⋅P(
¯
A2
)⋅P(
¯
A3
)=q1⋅q2⋅q3.(4)
В точности один станок отказал, остальные два - нет:
P(X1)==P(A1)⋅P(
¯
A2
)⋅P(
¯
A3
)+P(
¯
A1
)⋅P(A2)⋅P(
¯
A3
)+P(
¯
A1
)⋅P(
¯
A2
)⋅P(A3)==p1⋅q2⋅q3+q1⋅p2⋅q3+q1⋅q2⋅p3.(5)
В точности два станка отказали, а один - работает:
P(X2)==P(A1)⋅P(A2)⋅P(
¯
A3
)+P(A1)⋅P(
¯
A2
)⋅P(A3)+P(
¯
A1
)⋅P(A2)⋅P(A3)==p1⋅p2⋅q3+p1⋅q2⋅p3+q1⋅p2⋅p3.(6)
Все три станка отказали:
P(X3)=P(A1⋅A2⋅A3)=P(A1)⋅P(A2)⋅P(A3)=p1⋅p2⋅p3.(7)
Практика: укрощаем станки
Пример 1. Два станка работают независимо друг от друга. Вероятность того, что первый станок проработает смену без наладки, равна 0,9, а второй – 0,8. Найти вероятность того, что: а) оба станка проработают смену без наладки, б) оба станка за смену потребуют наладки.
Итак, случай с 2 станками, используем формулы (1) и (3), чтобы найти искомые вероятности. Важно, какое событие мы считаем базовым: выше в теории мы использовали "станок откажет", тут же удобнее событие "станок проработает смену" (при этом формулы сохраняют вид, но легко использовать не ту, будьте внимательны).
Итак, пусть pi - вероятность i-му станку проработать смену без наладки. И нужные вероятности:
1) Оба станка проработают смену без наладки:
P(A1⋅A2)=P(A1)⋅P(A2)=p1⋅p2=0,9⋅0,8=
1наб.(1Х + 2М + 3Ч) ? руб; но<2 наб. на 64000 руб
2наб.(3Х +2М + 1Ч) ? руб
Х - Ч = ? руб
Решение.
Приравняем второй набор к первому, учитывая разницу:
3Х + 2М + 1Ч = Х + 2М + 3Ч + 64 000 руб.
Так как микроволновые печи входят в оба набора и вносят одинаковые суммы денег в наборы, их можно исключить из равенства:
ЗХ + 1Ч = Х + 3Ч + 64 000 (руб)
Мы можем также исключить из обеих частей равенства по холодильнику и по чайнику, это не повлияет на равенство:
2Х = 2Ч + 64 000 (руб);
Если в правой и левой частях все уменьшим в 2 раза, равенство так же сохранится:
Х = Ч + 32 000 (руб),
А это означает, что холодильник дороже чайника на 32 тысячи рублей:
Х - Ч = 32 000 руб.
ответ: на 32 тысячи рублей холодильник дороже чайника.