Автобус - х км/ч
Грузовая машина - х + 18 км/ч
S - 420 км
t встречи - 3 ч
Найти:
Скорость автобуса и скорость грузовой машины - ? км
Пусть х км/ч - скорость автобуса, тогда х + 18 км/ч - скорость грузовой машины. По условию задачи они выехали одновременно и встретились через 3 часа, расстояние между городами - 420 км. Составим и решим уравнение:
3х + 3(х+18) = 420
3х + 3х + 54 = 420
6х = 420 - 54
6х = 366
х = 366 : 6
х = 61
1) 61 (км/ч) - скорость автобуса
2) 61 + 18 = 79 (км/ч) - скорость грузовой машины
ответ: скорость автобуса — 61 км/ч;
скорость грузовой машины — 79 км/ч.
1. Прямая и окружность имеют две общие точки, если расстояние от центра окружности до прямой меньше радиуса окружности.
2. Если прямая АВ - касательная к окружности с центром О и В - точка касания, то прямая АВ и радиус ОВ перпендикулярны.
3. Угол АОВ является центральным, если точка О является центром окружности, а лучи ОА и ОВ пересекают окружность. (отрезки ОА и ОВ будут являться радиусами окружности)
4. Вписанный угол, опирающийся на диаметр, равен 90°.
5. Дано: ∠АСD=31°.
∠ABD = 31° (т.к. он вписанный и опирается на ту же дугу, что и ∠АСD), ∠AOD = 62° (∠AOD центральный и опирается на ту же дугу, что и ∠АСD
. Следовательно он в два раза больше ∠AСD).
6.Если хорды АВ и CD окружности пересекаются в точке Е, то верно равенство
DЕ·ЕС = АЕ·ЕВ.
7.Если АВ- касательная, AD - секущая, то выполняется равенство
АВ² = АD·АС.
8. Если четырехугольник ABCD вписан в окружность, то сумма его противоположных углов равна 180°.
9. Центр окружности, вписанной в треугольник, совпадает с точкой пересечения биссектрис этого треугольника.
10. Если точка А равноудалена от сторон данного угла, то она лежит на биссектрисе этого угла.
11. Если точка В лежит на серединном перпендикуляре, проведенному к данному отрезку, то она равноудалена от концов этого отрезка.
12. Около любого треугольника можно описать окружность.