1. Нет, не получится. Представим, будто мы обкладываем поле доминошками. Каждая доминошка покрывает одно черное и одно белое поле, а при выкидывании полей a1 и h8 черных полей оказывается на 2 меньше, чем белых.
2. Решение Пусть искомое число abcd. Для каждой цифры a,b,c,d посчитаем, сколько раз она встречается в данных четырех числах. Очевидно, что сумма этих вхождений должна равняться 8. Поскольку никакая цифра не встречается в 3 числах, то каждая цифра встречается ровно дважды. Т.е. в искомом числе могут быть только цифры 0,1,3,4,6,7. Но в первом числе из этих цифр есть только 6 и 0. Значит, эти цифры в числе точно есть. Аналогично из третьего числа, получаем цифры 4 и 3. Составим табличку, в которой плюсики стоят в тех разрядах, в которых они могут быть написаны.
0 + − + −
3 − + − +
4 + − + −
6 + − − +
Т.к. в разряде сотен есть только один « + », то в разряде сотен числа стоит тройка. Действуя так далее и воспользовавшись тем, что четырехзначное число с нуля не начинается, получим число 4306, которое, очевидно, подходит. ответ 4306.
3. решение в файле
1. Нет, не получится. Представим, будто мы обкладываем поле доминошками. Каждая доминошка покрывает одно черное и одно белое поле, а при выкидывании полей a1 и h8 черных полей оказывается на 2 меньше, чем белых.
2. Решение Пусть искомое число abcd. Для каждой цифры a,b,c,d посчитаем, сколько раз она встречается в данных четырех числах. Очевидно, что сумма этих вхождений должна равняться 8. Поскольку никакая цифра не встречается в 3 числах, то каждая цифра встречается ровно дважды. Т.е. в искомом числе могут быть только цифры 0,1,3,4,6,7. Но в первом числе из этих цифр есть только 6 и 0. Значит, эти цифры в числе точно есть. Аналогично из третьего числа, получаем цифры 4 и 3. Составим табличку, в которой плюсики стоят в тех разрядах, в которых они могут быть написаны.
0 + − + −
3 − + − +
4 + − + −
6 + − − +
Т.к. в разряде сотен есть только один « + », то в разряде сотен числа стоит тройка. Действуя так далее и воспользовавшись тем, что четырехзначное число с нуля не начинается, получим число 4306, которое, очевидно, подходит. ответ 4306.
3. решение в файле
=
(1,5 + 1/4) : 2 13/32
0,5: 1,25 + 7/5 : 11/7 - 3/11
=
(1,5 + 0,25) : 77/32
0,4 + 7/5 * 7/11 - 3/11
=
1,75 : 77/32
0,4 + 49/55 - 15/55
=
1 75/100 : 77/32
4/10 + 34/55
=
1 75/100 : 77/32
2/5 + 34/55
=
175/100 : 77/32
22/55 + 34/55
=
175/100 * 32/77
56/55
=
175/25 * 8/77
56/55
=
25/25 * 8/11
56/55
= 56/55:8/11=56/55*11/8=7/55*11/1=7/5*1/1=
8/11
=7/5=1,4
1,4/35*100=4