где под
подразумевается квадрат переменной
т.е.
а его корнями
– квадраты искомых корней, если они различны, или его чётным корнем
если корень биквадратного трёхчлена
– единственный.
тогда
Потребуем, чтобы
откуда следует, что 
а корень биквадратного трёхчлена станет чётным
давая два искомых корня
Это значение
как раз уже и есть одно из искомых решений для параметра 
всегда будет два – левый и правый (меньший и больший), однако при некоторых обстоятельствах левый квадрат искомых корней будет отрицательным, а значит, не будет давать пару искомых корней. Среднеарифметическое квадратов искомых корней
по теореме Виета, в применении к биквадратному уравнению, будет равно числу, противоположному половине среднего коэффициента, т.е. оно равно
Отсюда следует, что правый квадрат искомых корней
– всегда положителен, а значит, всегда даёт два корня при положительном дискриминанте.
А значит, значение всего трёхчлена
взятое от
должно давать отрицательное значение, т.е. располагается в нижней межкорневой дуге параболы биквадратного трёхчлена.
;
;
;
50 005 — (1 534 + 827) — 1 005 = 46 639
1) 1 534 + 827 = 2361
2) 50 005 — 2361 = 47 644
3) 47 644 - 1 005 = 46 639
706 250 — (50 000 — 2 341) + 55 559 = 714 150
1) 50 000 — 2 341 = 47 659
2) 706 250 — 47 659 = 658 591
3) 658 591 + 55 559 = 714 150
105 000 + 78 000 – (350 + 25 600) = 157 050
1) 350 + 25 600 = 25 950
2) 105 000 + 78 000 = 183 000
3) 183 000 - 25 950 = 157 050
905 340 – (45 670 — 3 007) + 50 002 = 912 679
1) 45 670 — 3 007 = 42 663
2) 905 340 – 42 663 = 862 677
3) 862 677 + 50 002 = 912 679
Пошаговое объяснение:
2) 180/3 = 60(м) - вторая бригада за 1 д
3) 180/(30+60) = 2(дн) - бригада отремонтирует дорогу