3x + 6
Пошаговое объяснение:
Прямая пройдёт через точку (2 ; 0). Значит в этой точке она пересечёт ось OX.
Параллельность прямых будет задаваться условием, что y = 3x + k, где k - коэффициент, который нужно определить. 3x - отвечает за такой же угол наклона между прямой и осью OX.
Значит 0 = 3х - k. Подставив x = 2, получим, что k = 6.
Значит уравнение примет вид: 3x + 6.
(Для понимания постройте прямую, данную в примере и прямую, которую мы получили в ответе. Вы заметите, что коэффициенты k - координата точки пересечения оси OY, а коэффициенты при X (3x) - коэффициент наклона примой к оси OX).
На сторонах AB и BC треугольника ADC взяты точки D и E соответственно так, что AD:BD = 1:2 и CE:BE = 2:1. Отрезки AE и CD пересекаются в точке O. Найти площадь треугольника ABC, если площадь треугольника BCO равна 1.
Рассмотрим ∆ АВЕ.
По т Менелая (ВD:DA)•(AO:OE)•(CE:CB)=1
2/1•(AO:OE)•2/3=1, откуда АО:ОЕ=3:4
ОЕ делит ВС в отношении 1:2, считая от В.
Высота ∆ СОЕ и ∆ СОВ общая.
Отношение площадей треугольников с равными высотами равно отношению их оснований. СЕ:СВ=2/3⇒
Ѕ(ВОС)=1, значит, Ѕ(СОЕ)=2/3
В ∆ АСЕ отрезок СО делит АЕ в отношении 3:4, считая от А.
Высота ∆ АСЕ и ∆ СОЕ, проведенная из вершины С, общая.
Тогда Ѕ(САЕ)=2/3:4•7=7/6
Высота ∆ АВС и ∆ АСЕ общая.⇒
Ѕ АВС=Ѕ(АСЕ):2•3=(7/6):2•3=7/4
Пошаговое объяснение:
30 = 4 + 2n - 2
30 = 2 + 2n
30 - 2 = 2n
n = 28 / 2
n = 14