М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
мммм1984
мммм1984
28.03.2021 06:15 •  Математика

Вмузыкальном кружке 16 учеников два ученика играют на камбузе 4 на баяне остальные на домбре сколько учеников играет на домбре реши разными объясни решение

👇
Ответ:
vitek03
vitek03
28.03.2021
                 2)16-6=10

                 2)12-2=10
4,8(98 оценок)
Ответ:
darkishlord
darkishlord
28.03.2021
16-2=14уч.
14-4=10уч.

16-(2+4)=10уч.

16-2-4=10уч.
ответ: на домбре играют 10 учеников.
4,6(93 оценок)
Открыть все ответы
Ответ:
gallavich2004
gallavich2004
28.03.2021

белосне́жный→[б'илас'н'эжный']

В слове «белосне́жный»: слогов—4 (бе-ло-сне-жный), букв—11, звуков—11:

б→[б']:согласный, парный звонкий, парный мягкий

е→[и]:гласный

л→[л]:согласный, непарный звонкий, сонорный, парный твёрдый

о→[а]:гласный

с→[с']:согласный, парный глухой, парный мягкий

н→[н']:согласный, непарный звонкий, сонорный, парный мягкий

е→[э]:гласный

ж→[ж]:согласный, парный звонкий, непарный твёрдый

н→[н]:согласный, непарный звонкий, сонорный, парный твёрдый

ы→[ы]:гласный

й→[й']:согласный, непарный звонкий, сонорный, непарный мягкий

4,8(57 оценок)
Ответ:
Лера100223
Лера100223
28.03.2021

Пошаговое объяснение: Если забыть про условие задачи и поступить так - провести через выбранную точку Р на AD плоскость II DBC. Точки пересечения АВ и АС с этой плоскостью обозначим M1 и N1. Легко показать, что прямая РN1 II DC (если бы это было не так, то у параллельных по построению плоскостей DBC и PM1N1 была бы общая точка), и отношение AN1 : N1C = AP : PD по свойству параллельных прямых в плоскости (это свойство - что параллельные прямые отсекают пропорциональные отрезки у любых секущих). В плоскости ADC через точку Р можно провести ТОЛЬКО одну прямую II DC, поэтому прямая PN1 совпадает с прямой PN (точка N задана в задаче). Точно так же доказывается, что PM1 II DB и совпадает с прямой РМ (точка М задана в задаче).  

Итак, получилось, что плоскость, параллельная DBC, проходящая через точку P, содержит точки M и N (или можно сказать - две проходящие через Р несовпадающие прямые MP и NP). Поскольку через 3 различных точки (или можно сказать -  через 2 несовпадающие пересекающиеся прямые) можно провести ТОЛЬКО одну плоскость, то утверждение задачи доказано.

4,5(72 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ