5/14+0,4 = 5/14+4/10 = 5/14+2/5 = 25/70+28/70 = 53/70 пашни вспахано за первые 2 дня. 1-53/70 = 17/70 вспахано в 3 день. 136:17/70 = 136*70/17 = 8*70 = 560 га было всего.
Обозначим ВС = а, АВ = с, АС = в. Используем уравнение для нахождения длины медианы: . Неизвестные стороны обозначим: АВ = х, ВС = у. Подставим известные данные в виде системы уравнений: Приведя к общему знаменателю и возведя в квадрат обе части уравнений, получаем: Отсюда получаем: х² = 308, х = √308 = 2√77, у² = 392, у = √392 = 14√2.
Найдя стороны треугольника по теореме Герона находим его площадь: S=√(p(p-a)(p-b)(p-c)). Здесь р - полупериметр, р = 23.674459. S = √7684 = 87.658428.
Решение ищем по формуле Муавра-Лапласа. Обозначим р=0,1 (вероятность успеха) , n=500 (количество испытаний). Матожидание числа опытов М=n*p=500*0,1=50, дисперсия D=n*p*(1-p)=50*0,9=45. (50-10)/(45^0.5)>P>(50-7)/(45^0.5), то есть 6,41>P>5,963. Р=1/(6,28^0,5)интеграл в пределах от 5,963 до 6,41 exp(-x^2/2)=1,166*10^-9. Интеграл табличный, решается через табулированную функцию. Требуемые значения случайной величины выходят за границу 4* ско, поэтому значение вероятности и такое маленькое.
1-53/70 = 17/70 вспахано в 3 день.
136:17/70 = 136*70/17 = 8*70 = 560 га было всего.