Связь между радиусом вписанной окружности r и радиусом описанной окружности R определяется формулой: , где n- число сторон многоугольника. Отсюда их соотношение равно: Отношение площадей кругов равно отношению квадратов их радиусов: По условию задачи оно равно 0,75 или 3/4. Получаем Значение √3/2 соответствует углу 30°. Значит, 180°/n = 30°, отсюда n = 180/30 = 6. Если периметр многоугольника равен 12, а число сторон равно 6, то длина стороны составит a = 12/6 = 2 см. Радиус описанного круга для шестиугольника R = a = 2 см. Радиус вписанного круга r = a*(√3/2) = 2*(√3/2) = √3 см.
2х9=18
х=2
б) х(х-3)=28
7х4=28
х=7
в)х(х+1)=42
6ч7=42
х=6