ответ: 18 кв. см..
Пошаговое объяснение:
1) площадь боковой пирамиды, у которой рёбра равнонаклоненны к плоскости основания равна половине произведения периметра основания на высоту боковой грани,т.е. S бок = ½·P осн·SM (см. рис.).
2) Найдём периметр основания, для этого вычислим гипотенузу по теореме Пифагора АВ= √ВС²+АС²=√6²+3²=√45=3√5 (см), тогда Р = 9+3√5 (см).
3)Найдём высоту бок. грани из Δ SHM - прям.:
SM= 2·MH= 2·(AC+BC-AB)/2=9-3√5 (cм) (!!!МН - радиус вписанной окружности) .
Тогда S бок = ½·P осн·SM = ½·(9+3√5)(9-3√5)= ½·(81-45)=18 (кв.см.)
ответ: 18 кв. см..
Тело, которое получилось, имеет веретенообразную форму: два конуса с одним общим основанием,
радиусr которого - высота ВО треугольника АВС, проведенная к стороне АС, вокруг которой треугольник вращается;
образующие - АВ и ВС соответственно;
высота каждого конуса - СО и ОА, сумма которых равна АС.
Объем тела вращения равен сумме объемов конусов:
V=v₁ +v₂
v₁=Sh₁:3=πr²h₁:3
v₂=Sh₂:3=πr²h₁:3
V=πr²h₁:3+πr²h₁:3=S(h₁+h₂):3=πr²*АС:3
Радиус r основания, общего для обоих конусов, найдем из площади треугольника АВС, найденной по формуле Герона.
Вычисления банальны, приводить поэтому иx не буду.
Площадь треугольника АВС равна 84
r=ВО=2S ᐃ АВС:АС=168:21=8
V =πr²*АС:3=π*64*21:3=448π
Площадь поверхности равна сумме площадей боковой поверхности конусов:
Sт.вр.=πrL₁+πrL₂=πr(L₁+L₁)
Sт.вр.=π*8*(10+17)=216π
414=2×9×23