(1) a^20
(2) b^30
(3) c^4
(4) d^30 (
5) c^5 (6)
k^84
(^ - знак степени)
Пошаговое объяснение:
Правило один: Если степень возводится в другую степень, то они перемножаются.
Пример: (a^2)^2 = a^4
Правило два: Если число в одной степени умножается на другое число в другой степени, то числа перемножаются , а степени складываются.
Пример: a^4 × a^4 = a^8
Правило три: Если число в одной степени делится на другое число в другой степени, то числа делятся, а степени вычитаются.
Пример: a^7 : a^4 = a^3
(2^2 : 1^2 = 4 : 1 = 4)
ответ:Удачи!
Пошаговое объяснение:
Время , которое пешеход был в пути до момента выезда велосипедиста - 25 мин.
Время , через которое велосипедист встретил пешехода - 15 мин.
Расстояние , которое проехал велосипедист до встречи на 550 м больше, чем пешеход.
Пусть скорость пешехода ( V₁) х м/мин., тогда
скорость велосипедиста ( V₂) - ( х + 170) м/ мин
Время , которое был в пути пешеход ( t₁) , до момента встречи :
25 + 15 = 40 мин.
Время , которое был в пути велосипедист ( t₂ ) , до момента встречи
15 мин.
Расстояние , которое преодолел пешеход (S₁) , до момента встречи :
S₁ = V₁t₁ = 40x м
Расстояние , которое преодолел велосипедист ( S₂ ) ,до момента встречи :
S₂ = V₂t₂ = 15( x+170) м и это составило на 550 м больше , чем преодолел пешеход.Заполним таблицу ( см. во вложении ) .
Составим уравнение :
15( х + 170 ) - 550 = 40х
15х + 2550 - 40 х = 550
15х - 40 х = 550 - 2550
- 25х = -2000 | * ( - 1 )
25х = 2000
х = 2000 : 25
х = 80 м/ мин. составляла скорость пешехода
80 + 170 = 250 м/мин составляла скорость велосипедиста .