Ищем производную первого порядка, анализируем монотонность функции. Ищем значения от -2 и 0, а также от минимума или максимума, который входит в этот промежуток.
Пошаговое объяснение:
f'(x)=4x³-4x+0
f'(x)=4x(x²-1)
4x(x²-1)≥0
Ищем корни:
x=0 и x²=1 ⇒ x= +1 | -1
Рисуем координатную прямую , с метода интервалов устанавливаем знаки. На промежутке от минус бесконечности до -1 функция спадает, а от -1 до 0 возрастает. х = 1 есть минимум.(Там , где будет минус- функция спадает, а там, где плюс - возрастает)
Находим значения в точках(Подставляем в самое первое уравнение) -2, 0, -1 :
f(-2)=16-8+2=10 - МАКСИМАЛЬНОЕ ЗНАЧЕНИЕ
f(0)=0-0+2=2
f(-1)=1-2+2=1 -МИНИМАЛЬНОЕ ЗНАЧЕНИЕ
Ищем производную первого порядка, анализируем монотонность функции. Ищем значения от -2 и 0, а также от минимума или максимума, который входит в этот промежуток.
Пошаговое объяснение:
f'(x)=4x³-4x+0
f'(x)=4x(x²-1)
4x(x²-1)≥0
Ищем корни:
x=0 и x²=1 ⇒ x= +1 | -1
Рисуем координатную прямую , с метода интервалов устанавливаем знаки. На промежутке от минус бесконечности до -1 функция спадает, а от -1 до 0 возрастает. х = 1 есть минимум.(Там , где будет минус- функция спадает, а там, где плюс - возрастает)
Находим значения в точках(Подставляем в самое первое уравнение) -2, 0, -1 :
f(-2)=16-8+2=10 - МАКСИМАЛЬНОЕ ЗНАЧЕНИЕ
f(0)=0-0+2=2
f(-1)=1-2+2=1 -МИНИМАЛЬНОЕ ЗНАЧЕНИЕ
Найдем количество краски, необходимое для покраски 1 дм²:
2:120=1/60 л.
Вычислим площадь подоконника (1м=10 дм):
12·1=12 дм²
тогда площадь двух подоконников равна:
2·12=24 дм²
Определим количество краски:
1/60·24=4/10=0,4 л.