Уравнение прямой, включающей сторону ВС, найдём, подставив координаты точки М в уравнение с координатами переменных, как у параллельной прямой AD 3x + y – 2 = 0.
3*1 + (-3) + C = 0, отсюда С = -3 + 3 = 0.
Получаем уравнение BC: 3x + y = 0.
Находим вершину B параллелограмма как точку пересечения прямых АВ и ВС, решив систему:
{x – 4y + 1 = 0 x – 4y + 1 = 0
{3x + y = 0 (x4) = 12x + 4y = 0
13x + 1 = 0, x = -1/13,
y = – 3x = – 3(-1/13) = 3/13. Точка В((-1/13); (3/13)).
Находим точку С как симметричную точке В относительно точки М(1; -3).
х(С) = 2х(М) – х(В) = 2*1 - (-1/13) = 27/13,
y(С) = 2y(М) – y(В) = 2*(-3) - (3/13) = -81/13.
Уравнение прямой, включающей сторону CD, найдём, подставив координаты точки C в уравнение с координатами переменных, как у параллельной прямой AB x - 4y + 1 = 0.
(27/13) - 4(-81/13) + C = 0, отсюда С = (-27/13) – (324/13) = -351/13 = -27.
Получаем уравнение CD: x - 4y - 27 = 0.
1) 4 × 13 × 25 = (4 × 25) × 13 = 100 × 13 = 1300
2) 125 × 17 × 8 = (125 × 8) × 17 = 1000 × 17 = 17000
3) 4 × 24 × 5 = (4 × 5) × 24 = 20 × 24 = 480
4) 50 × 236 × 2 = (50 × 2) × 236 = 100 × 236 = 23600
N°2.
1) 12 × 3a = 36a
2) 8x × 7 = 56x
3) 27 × b × 5 = 135b
4) 6a × 7b = 42ab
5) 35x × 23y = 805xy
6) 4a × 9 × b × 2 × c = 72abc