Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны.
Теоремы (свойства параллелограмма):
В параллелограмме противоположные стороны равны и противоположные углы равны: AB = CD, BC = AD, \angle ABC = \angle
ADC,\angle BAD = \angle BCD.
Диагонали параллелограмма точкой пересечения делятся пополам: AO
= OC, OB = OD.
Углы, прилежащие к любой стороне, в сумме равны 180^\circ .
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: AC^2 + BD^2 = 2AB^2 + 2BC^2 .
Признаки параллелограмма:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм. Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм. Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм. Середины сторон произвольного (в том числе невыпуклого или четырехугольника K,\;L,\;M,\;N являются вершинами параллелограмма Вариньона. Стороны этого параллелограмма параллельны соответствующим диагоналям четырехугольника ABCD. Периметр параллелограмма Вариньона равен сумме длин диагоналей исходного четырехугольника, а площадь параллелограмма Вариньона равна половине площади исходного четырехугольника.
Пошаговое объяснение:
РЕШЕНИЕ
Площадь трапеции по формуле
S = (a+b)*h/2
a = 2*R = 6 см - большее основание.
∠АСВ = 90° -опирается на диаметр.
∠АВС + ∠BCD = 180 - смежные между параллельными AB || CD.
∠АВС = 60°
∠ВАС = 180 - 90 - 60 = 30°- вспоминаем - sin 30 = 0.5
ВС= АВ*sin30 = AB/2 = 3 см - боковая сторона.
ВЕ = ВС*sin30 = 1.5 см
b = a - 2*BE = 6 - 2*1.5=3 - малое основание.
h = BC*cos 30 = 3√3/2 ~ 0.866 - высота.
Подставим в формулу площади
S =1/4*(6+3)*3√3 = 27/4*√3 = 6,75*√3 ~ 11.7 см² - ОТВЕТ