автобусы прибыли на эту остановку только за 16 минут, за 10 минут и за 2 минуты до окончания смены первого работника и до прихода второго работника.
пусть шустрый автобус прибыл -16 и -10 минут а медленный -2 , (интервал шустрого 6, интервал медленного 12) тогда шустрый должен был быть -4 минуты - противоречит условию
пусть шустрый автобус прибыл -16 и -2 минут а медленный -10, (интервал шустрого 14, интервал медленного 28) тогда шустрый должен быть +12, медленный +18
пусть шустрый автобус прибыл -10 и -2 минут а медленный -16, (интервал шустрого 8, интервал медленного 16) тогда шустрый должен быть +2, медленный +0 - противоречит условию
пусть шустрый автобус прибыл -16 минут а медленный -10 и -2, (интервал шустрого 4, интервал медленного 8) тогда шустрый должен был -14 -10-6-2 - противоречит условию
пусть шустрый автобус прибыл -10 минут а медленный -16 и -2, (интервал шустрого 7, интервал медленного 14) тогда шустрый должен был -3 - противоречит условию
пусть шустрый автобус прибыл -2 минут а медленный -16 и -10, (интервал шустрого 3, интервал медленного 6) тогда шустрый должен был -8-5 - противоречит условию
По условию задачи чертим рисунок, получаем трапецию АВСД, в которой АВ - расст м/д центрами окружностей, СД - длина общей касательной = 12 см, ВС - радиус =1 см, АД - радиус =6 см. Найти надо АВ-?
Решение: 1) АВСД - трапеция по определению, так как по условию АД и ВС перпендикулярны СД (как радиусы к общей касательной), => AD||BC . 2) Опустим высоту ВН, Н∈АД и ВН=СД=12 см, => тр АВН (уг Н=90*) - прямоугольный, АН = АД - ВН = АД-ВС; АН = 6-1 = 5 см => по т Пифагора АВ²=АН²+ВН² => АВ² = 12²+5², АВ² = 144+25 = 169; АВ = 13 см
ответ: Расстояние м/д центрами данных окружностей равно 13 см
f(x) = -2tg(7x)
f(-x) = -2tg(7(-x)) = 2 tg(x)
Функция нечетная, так как tg(-x) = -tg(x)