4 + 4√3 см.
Пошаговое объяснение:
Начертим рисунок к задаче:
А - точка, отстоящая от плоскости на расстоянии 4 см,
АН - перпендикуляр из точки А на плоскость, его длина 4 см,
АВ - наклонная из точки А, образующая угол 30° с плоскостью,
АС - наклонная из точки А, образующая угол 45° с плоскостью,
угол между наклонными АВ и АС прямой.
Так как АН перпендикуляр, то треугольники АНВ и АНС прямоугольные.
В треугольнике АНС один из острых углов равен 45°, следовательно два его катета АН и НС равны между собой, таким образом НС = 4 см.
tg ABH = АН/HВ;
HB = AH/tg ABH = 4/tg 30° = 4/(1/√3) = 4√3 (см).
Расстояние между концами наклонных будет равно сумме отрезков ВН и НС:
ВС = ВН + НС = 4 + 4√3 (см).
ответ: 4 + 4√3 см.
По-моему решение неверное.
Как вообще решаются задачи на минимум(максимум)?
Вводится "х" ( за "х" берётся то, что спрашивается). С "х" составляется формула функции, которую нужно исследовать на минимум(максимум). Затем проводится исследование:
1) ищем производную
2) приравниваем её к нулю и решаем уравнение ( ищем критические точки)
3) исследуем получившиеся корни на минимум (максимум)
4) пишем ответ.
Пробуем!
Пусть R = х, тогда размеры окна будут 2х и 7,5 -2х
S = 2х(7,5 - х) = 15х - 2х²
S'= 15 - 4x
15 - 4x = 0
4x = 15
x = 3, 75
-∞ 3,75 +∞
+ _ это знаки производной.
х = 3,75 - это точка максимума
При R = 3,75 площадь окна будет наибольшей.
2)30-14=16 это скорость 2 велопедиста
так легко за 3 класс