М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
TheFlyHelp
TheFlyHelp
09.08.2022 11:36 •  Математика

Строительная смесь состоит из водю,цемента и песка : 2/9 части цемента, 2/3 чести песка , остальное вода. сколько кг песка надо взять , чтобы приготовить смесь , содержащую 50 кг цемента ?

👇
Ответ:
1) 2/3 = 6/9 - песок
2)50/9*6=33 1/3 (33 целых и одна третья) кг
ответ 33 1/3 (33 целых и одна третья)
4,5(45 оценок)
Открыть все ответы
Ответ:

Для начала поработаем со вторым выражением. Первые три слагаемых свернем в квадрат разности: ((3x)^{2}-y^{2})^{2}; В следующих двух слагаемых вынесем общий множитель "40": 40(9x^{2}+y^{2})=40((3x)^{2}+y^{2}); В итоге получим следующее уравнение: ((3x)^{2}-y^{2})^{2}-40((3x)^{2}+y^{2})+400=0. В скобках мы видим похожие выражения, отличающиеся лишь знаком посередине (такие выражение называются сопряженными). А хотелось бы видеть там равные (строго говоря тождественные) выражения. Пусть в первой скобке вместо (3x)^{2}-y^{2} будет стоять (3x)^{2}+y^{2}; Это приведет к тому, что придется убавить 2\times 18x^2y^2=4(3xy)^{2}; В итоге: ((3x)^{2}+y^{2})^{2}-40((3x)^{2}+y^{2})+400= 4(3xy)^{2}; Слева стоит квадрат суммы. Уравнение примет вид: ((3x)^{2}+y^{2}-20)^{2}=(6xy)^{2} \Leftrightarrow ((3x)^{2}+y^{2}-20+6xy)((3x)^{2}+y^{2}-20-6xy)=0; Сворачивая еще раз: ((3x+y)^{2}-20)((3x-y)^{2}-20)=0; Получаем серию прямых: \pm 3x+\sqrt{20},\; \pm3x-\sqrt{20}; А теперь приступим к рассмотрению первого уравнения.

Это уравнение задает круг с центром в точке (0, 0) и радиусом \sqrt{2} ; Рассмотрим прямую y=3x+\sqrt{20}; Найдем радиус окружности с центром в начале координат, которая касается данной прямой. Это легко сделать из подобия треугольников. \frac{\sqrt{20}\times 3}{3\times 10\sqrt{2}}=\frac{r}{\sqrt{20}} \Leftrightarrow r=\sqrt{2}; Значит, круг касается всех этих четырех прямых. Достаточно найти только координаты касания с любой из прямых. Это делается так же, как и находился радиус окружности. Для той же прямой это координаты (-\frac{3\sqrt{5}}{5},\; \frac{\sqrt{5}}{5} } ); Ну а все решения:

(\frac{3\sqrt{5}}{5},\; \frac{\sqrt{5}}{5}),\; (\frac{3\sqrt{5}}{5},\; -\frac{\sqrt{5}}{5}),\; (-\frac{3\sqrt{5}}{5},\; \frac{\sqrt{5}}{5}),\; (-\frac{3\sqrt{5}}{5},\; -\frac{\sqrt{5}}{5})

4,6(12 оценок)
Ответ:
Katruna24
Katruna24
09.08.2022

Пошаговое объяснение: Так как уравнение должно иметь ровно 1 корень=> этот корень кратности 3 и значит данный многочлен раскладывается на (bx+-c)^3 и так как корень отрицательный значит берём знак +;

(Bx+C)^3=(Bx)^3+3*(Bx)^2*c+3*bx*c^2+c^3=3x^3-x^2-7x+a-2

Из этого видно, что b= Кубическийкореньиз3=>3x^3-x^2-7x+a-2=3x^3+3*(кубическийкореньиз3)^2*x^2*c+3*кубическийкореньиз3*c^2*x+c^3

-x^2-7x+a-2=3*(кубическийкореньиз3)^2*x^2*c+3*кубическийкореньиз3*c^2*x+c^3 из этого с легкостью можем найти С.

-x^2=3*(кубическийкореньиз3)^2*x^2*c

-1=3*(кубическийкореньиз3)^2*c

С=-1/(3*(кубическийкореньиз3)^2)

=>a-2=(-1/(3*(кубическийкореньиз3)^2))^3

a-2=-1/(27*9)

a-2=-1/243

a=485/243

4,4(88 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ