Введите поисковой запрос
Расширенный поиск
ВОЙТИ / ЗАРЕГИСТРИРОВАТЬСЯЕдиное окно доступа к образовательным ресурсам
ДИСКРЕТНАЯ МАТЕМАТИКА: МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ РЕШЕНИЯ ЗАДАЧ ПО КУРСУ
Автор/создатель: Азарнова Т.В., Булгакова И.Н.
13
Голосов: 12
Данная работа содержит краткое изложение теории множеств, бинарных отношений и комбинаторики, соответствующее курсу лекций по дисциплине "Дискретная математика", читаемому на факультете ПММ. Пособие содержит ряд примеров, демонстрирующих использование изложенной теории для решения конкретных задач. Для закрепления материала в конце параграфов приведены задачи для самостоятельного решения, которые могут быть также использованы для проведения практических занятий.
Приведенный ниже текст получен путем автоматического извлечения из оригинального PDF-документа и предназначен для предварительного просмотра.
Изображения (картинки, формулы, графики) отсутствуют.
Страницы ← предыдущая следующая →
1 2 3 4 5 6
11
Теория множеств
1) последовательности непустых множеств Χ 1 , Χ 2 ,..., Χ n ,..., такой, что
Χ 1 ⊃ Χ 2 ⊃ ... и Ι Χ n = ∅ ;
n∈Ν
2) последовательности множеств, отличных от универсального множества
Λ , такой, что Χ 1 ⊂ Χ 2 ⊂ ... и Υ Χ n = Λ ;
n∈Ν
3) семейства множеств такого, что пересечение любого конечного числа
множеств из этого семейства непусто, а пересечение всех множеств пусто.
§ 2. Прямое произведение множеств.
Бинарные отношения
Произведением (или декартовым произведением) Χ 1 × Χ 2 двух
непустых множеств Χ 1 и Χ 2 будем называть множество упорядоченных
пар (x1 , x 2 ), где x1 ∈ Χ 1 , x 2 ∈ Χ 2 . Это понятие выросло из понятия
декартовой системы координат. Данное понятие можно обобщить и на
случай n множеств. Если Χ 1 , Χ 2 ,..., Χ n - n непустых множеств, то их
произведение состоит из всевозможных упорядоченных наборов
(x1 , x 2 ,..., x n ) , x k ∈ Χ k , k = 1,..., n элементов этих множеств. Если множества
Χ 1 = Χ 2 = ... = Χ n = Χ , то их произведение Χ 1 , Χ 2 ,..., Χ n обозначается
Χ n . Так, символом R n обозначается множество упорядоченных векторов n
вещественных чисел.
Любое подмножество из произведения Χ ×Υ называется бинарным
отношением. Если Χ =Υ , то бинарное отношение называется бинарным
отношением на множестве Χ . Бинарные отношения обозначаются буквами
φ , ρ , f ,... Если пара (x, y ) принадлежит бинарному отношению ρ , то пишут
(x, y )∈ ρ или x ρ y .
Для задания бинарного отношения ρ используют те же методы, что и
для произвольных множеств, кроме того, бинарное отношение, заданное на
конечном множестве Χ , можно задать в виде графа, а бинарное отношение
на множестве R можно задать в виде декартовой диаграммы. Под графом
бинарного отношения мы понимаем схему, в которой элементы множества
Χ изображаются точками на плоскости, элементы x, y ∈ Χ , такие, что пара
(x, y )∈ ρ соединяются стрелкой, направленной от x к y , пары (x, x )∈ ρ
изображаются петлей вокруг точки x . Под декартовой диаграммой
понимают изображение пар (x, y ) ∈ ρ в декартовой прямоугольной системе
координат.
Областью определения бинарного отношения ρ называется множество
D ρ = {x ∈ Χ : ∃y (x, y )∈ ρ }.
Областью значений бинарного отношения ρ называется множество
R ρ = {y ∈Υ : ∃x (x, y )∈ ρ }.
12
Теория множеств
Бинарное отношение ρ на множестве Χ называется рефлексивным,
если для любого x ∈ Χ пара (x, x ) ∈ ρ . Если Χ - конечное множество, то
рефлексивность бинарного отношения ρ означает, что на графе данного
бинарного отношения вокруг каждой точки x из Χ есть петля. Если Χ = R ,
то рефлексивность бинарного отношения ρ с точки зрения декартовой
диаграммы означает, что в число изображенных точек войдут все точки
прямой y ( x) = x .
Бинарное отношение ρ на (4,2 ), .
(2,3), (2,4), (2,5) (5,1), (5,2)
Су́мма (лат. summa — итог, общее количество) в математике — это результат применения операции сложения величин (чисел, функций, векторов, матриц и т. д.), либо результат последовательного выполнения нескольких операций сложения (суммирования). Общими для всех случаев являются свойства коммутативности, ассоциативности, а также дистрибутивности по отношению к умножению (если для рассматриваемых величин умножение определено), то есть выполнение соотношений:
{\displaystyle a+b=b+a}{\displaystyle a+(b+c)=(a+b)+c}{\displaystyle (a+b)\cdot c=a\cdot c+b\cdot c}{\displaystyle c\cdot (a+b)=c\cdot a+c\cdot b}
В теории множеств суммой (или объединением) множеств называется множество, элементами которого являются все элементы слагаемых множеств, взятые без повторений.
Операция сложение (нахождение суммы) может быть определена для более сложных алгебраических структур (сумма групп, сумма линейных пространств, сумма идеалов, и другие примеры). В теории категорий определяется понятие суммы объектов.
Ширина прямоугольника равна 300:20=30:2=15 см