Введем систему координат с началом в точке отправления мяча (см. рисунок).
Запишем законы движения по осям:
(1) x (t) = v_{0x}t
(2) y(t) = v_{0y}t - frac{gt^2}{2}
По условию известна скорость в точке 1, где y=h.
Найдем время полета мяча до кольца:
y = h = v_{0y} t_1 - frac{gt_1^2}{2}
Имеем квадратное уравнение относительно t, его решения:
t_1 = frac{v_{0y} pm sqrt{v_{0y}^2-2gh}}{g}.
Скорость мяча найдем, дифференцируя уравнения (1) и (2):
(3) v_x (t) = v_{0x}
v_y (t) = v_{0y} - gt, подставим сюда выражение для времени полета, получим:
(4) v_{1y} = v_{0y} - gt_1 = sqrt{v_{0y}^2 - 2gh}.
По теореме Пифагора:
v_1^2 = v_{1x}^2 + v_{1y}^2, подставим сюда выражение (3) и (4):
v_1^2 = v_{0x}^2 + v_{0y}^2 - 2gh
Отсюда, окончательно имеем:
v_0 = sqrt{v_1^2 + 2gh}.
Подставим сюда значения из условия:
v₀ = √(9 + 2*9.8*1) = 5.3 м/с
Введем систему координат с началом в точке отправления мяча (см. рисунок).
Запишем законы движения по осям:
(1) x (t) = v_{0x}t
(2) y(t) = v_{0y}t - frac{gt^2}{2}
По условию известна скорость в точке 1, где y=h.
Найдем время полета мяча до кольца:
y = h = v_{0y} t_1 - frac{gt_1^2}{2}
Имеем квадратное уравнение относительно t, его решения:
t_1 = frac{v_{0y} pm sqrt{v_{0y}^2-2gh}}{g}.
Скорость мяча найдем, дифференцируя уравнения (1) и (2):
(3) v_x (t) = v_{0x}
v_y (t) = v_{0y} - gt, подставим сюда выражение для времени полета, получим:
(4) v_{1y} = v_{0y} - gt_1 = sqrt{v_{0y}^2 - 2gh}.
По теореме Пифагора:
v_1^2 = v_{1x}^2 + v_{1y}^2, подставим сюда выражение (3) и (4):
v_1^2 = v_{0x}^2 + v_{0y}^2 - 2gh
Отсюда, окончательно имеем:
v_0 = sqrt{v_1^2 + 2gh}.
Подставим сюда значения из условия:
v₀ = √(9 + 2*9.8*1) = 5.3 м/с
( 2х - 3 ) ^ 2 - ( 1 - 2х ) ^ 2 = 0
далее по формуле разности квадратов
( 2х - 3 + 1 - 2х ) * ( 2х - 3 - 1 + 2х ) = 0
-2 * ( 4х - 4 ) = 0
4х = 4
х =1
можно конечно в квадрат возвести
4х ^ 2 - 12х + 9 = 1 - 4х + 4х ^ 2
8х = 8
х =1
вот так