Испытание состоит в том, что из 20 вопросов выбирают 8.
n=C⁸₂₀=20!/((20-8)!·8!)=13·14·15·16·17·18·19·20/(2·3·4·5·6·7·8)=13·17·3·19·10=
=
Пусть событие А - " из восьми вопросов знает ответ на 5, не знает на три"
Событию А благоприятствуют исходы:
m=C⁵₁₄·C³₆ - пять вопросов из четырнадцати выученных и три вопроса из шести невыученных
m= (14!/(14-5)!·5!)· (6!/(6-3)!·3!)= ((10·11·12·13·14)/(2·3·4·5)) · (4·5·6/(2·3))=
=11·13·14·4·5
По формуле классической вероятности
p(A)=m/n=(11·13·14·4·5)/(13·17·3·19·10)=(11·14·2)/(17·3·19)=308/969
Пошаговое объяснение:
Вроде правильно посчитал.
1) 60/(4/3)=60*3/4=45 ударов за 1 минуту 1 колокола;
2) 60/(5/3)=60+3/5=36 ударов за 1 минуту 2 колокола;
3)60/2=30 ударов за 1 минуту 3 колокола.
каждые 3 секунды удары первого колокола будут совпадать с ударами 3 колокола.
значит 45*2/3=30 ударов первого колокола, не совпавших с третьим.
так же каждые 3 секунды удары второго колокола будут совпадать с ударами 3 колокола.
значит 36*2/3=24 ударов второго колокола, не совпавших с третьим.
несколько ударов первого и второго колокола тоже будут совпадать. (каждые 5 тактов первого и каждые 4 такта второго). Но 3 из них уже совпадали с тактами 3 колокола.
Итого:30+24+30-6=78 .
2) 33:3 = 11 (яб.) - в каждой вазе
ответ: 11 яблок