треугольник АВС, АН=30 и СМ=39 медианы, АМ=МВ, ВН=НС, МН-средняя линия треугольника=1/2АС=26/2=13, АМНС - трапеция, МН параллельна АС, из точки Н проводим линию параллельную СМ до пересечения ее с продолжением АС в точке Е, ЕН=СМ=39, СМНЕ- параллелограмм, СЕ=МН=13, АЕ=АС+СЕ=26+13=39
треугольникАНЕ равнобедренный, АЕ=ЕН=39, проводим высоту ЕТ=медиане=биссектрисе на АН, АТ=ТН=1/2АН=30/2=15, треугольникАТЕ прямоугольный, ЕТ²=АЕ²-АТ²=1521-225=1296, ЕТ=36, площадь АНЕ=площадь трапеции АМНС=1/2*АН*ЕТ=1/2*30*36=540, что составляет 3/4 площади АВС
(площадь треугольника отсекаемого средней линией (МН)=1/4 площади АВС, можно подсчитать самим),
площадь АВС=площадьАМНС*4/3=540*4/3=720
на плоскости:
1) пролегает мимо окружности
2) пролегает через центр окружности
3) прямая имеет 2 точки касания с окружностью
4) прямая имеет 1 точку касания с окружностью
в мимо окружности в перпендикулярной плоскости
6) мимо окружности под углом к плоскости окружности
7) пролегает через центр окружности в перпендикулярной плоскости
8) пролегает через центр окружности под углом к плоскости окружности
9) прямая имеет 1 точку касания с окружностью в перпендикулярной плоскости
10) прямая имеет 1 точку касания с окружностью под углом к плоскости окружности
11) прямая имеет 1 точку касания с кругом в перпендикулярной плоскости
12) прямая имеет 1 точку касания с кругом под углом к плоскости окружности
Все простые числа, кроме 2, нечётные. Рассмотрим два случая:
1. p = 2: 16 + 15 = 31 — простое.
2. p > 2: тогда p — нечётное, а вместе с ним p⁴ также нечётное. 15 — тоже число нечётное. Сумма двух нечётных чисел чётна. Ясно, что двойкой это выражение быть не может, значит, оно должно быть нечётным. То есть для p > 2 решений нет.
ответ: 2