Играют равносильные шахматисты, поэтому вероятность выигрыша р = 1/2; следовательно, вероятность проигрыша q также равна 1/2. Так как во всех партиях вероятность выигрыша постоянна и безразлично, в какой последовательности будут выиграны партии, то применима формула Бернулли. Найдем вероятность того, что две партии из четырех будут выиграны:
Р4 (2)=C42p2q2 = 4*3/(1*2)*(1/2)2(1/2)2 = 6/16.
Найдем вероятность того, что будут выиграны три партии из шести:
Р6(3)=C63p3q3 = 6*5*4/(1*2*3)*(1/2)3(1/2)3=5/16.
Так как Р4(2)> Р6(3), то вероятнее выиграть две партии из четырех, чем три из шести.
Играют равносильные шахматисты, поэтому вероятность выигрыша р = 1/2; следовательно, вероятность проигрыша q также равна 1/2. Так как во всех партиях вероятность выигрыша постоянна и безразлично, в какой последовательности будут выиграны партии, то применима формула Бернулли. Найдем вероятность того, что две партии из четырех будут выиграны:
Р4 (2)=C42p2q2 = 4*3/(1*2)*(1/2)2(1/2)2 = 6/16.
Найдем вероятность того, что будут выиграны три партии из шести:
Р6(3)=C63p3q3 = 6*5*4/(1*2*3)*(1/2)3(1/2)3=5/16.
Так как Р4(2)> Р6(3), то вероятнее выиграть две партии из четырех, чем три из шести.
числитель = (3х-1)(3х-1)(2х+3) = 3*(х-1/3)*3*(х-1/3)*2*(х+3/2) =
=18(х-1/3)²(х+3/2) = 18(х² - 2/3*х+1/9)(х +3/2)
знаменатель =(2х+1)(2х+1)(3х+2) =2*(х +1/2)*2*(х+1/2)*3*(х+2/3) =
= 12(х²+х +1/4)(х +2/3)
если в числителе и в знаменателе раскрыть скобки, то получим многочлены, в которых старший член = х³
Теперь если и числитель , и знаменатель разделить на х³, то получим дроби, у которых знаменатель →∞, а значит, сама дробь →0
Сам пример lim18*1/12*1= 3/2 = 1,5
х→∞