М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Saniek34
Saniek34
04.08.2020 17:55 •  Математика

Дроби к наименьшему общему знаменателю 6/11 и 4/9

👇
Ответ:
Lera200710
Lera200710
04.08.2020
Общий знаменатель дроби 99
4,4(85 оценок)
Ответ:
yanshin4961
yanshin4961
04.08.2020
6/11 и 4/9 имеют наименьший общий знаменатель 99 =>
=> 6/11=54/99 и 4/9=44/99
4,8(29 оценок)
Открыть все ответы
Ответ:
katerinaderiiu
katerinaderiiu
04.08.2020
1) Обозначим скорость лодки w, а скорость течения (и кепки) v.
Турист плыл против течения со ск. w-v, а кепка уплывала от него со ск. v.
Так как плыли они в разные стороны, то скорости складываются. w-v + v = w.
То есть со скоростью лодки.
Течение вообще можно не учитывать.
Через 10 мин турист заметил, что кепка пропала, и повернул за ней.
Догонял он ее тоже со скоростью лодки w.
Поэтому догнал еще через 10 мин.
Таким образом, кепка за 20 мин проплыла 1 км. А за 60 мин = 1 час она проплывет 3 км.
Скорость течения v = 3 км/ч.

2) Однозначных чисел 5.
Двузначных 5^2=25, потому что на каждом месте может быть любая цифра от 1 до 5.
Трехзначных 5^3 = 125.
Всего 5+25+125 = 155
4,8(89 оценок)
Ответ:
annkhanenko23
annkhanenko23
04.08.2020
Задание 1. Всего количество чисел от 10 до 60 - 60-9=51. Среди них, количество чисел, делящихся на 4 равно 13 (12;16;20;24;28;32;36;40;44;48;52;56;60)

Искомая вероятность : P=13/51 ≈ 0.25

Задание 2. Выбрать один белый шар можно 10 а два черных шара - C^2_6= \dfrac{6!}{2!4!} =15 По правилу произведения, вынуть один белый шар и два черных шара можно кол-во благоприятных событий)

Количество все возможных событий: C^3_{16}= \dfrac{16!}{13!3!}= 560

Искомая вероятность: P= \dfrac{150}{560}= \dfrac{15}{56}

Задание 3. Выбрать одного мужчину можно а трёх женщин - C^3_{10}= \dfrac{10!}{3!7!}= 120 И тогда выбрать делегацию из четырёх человек(1 мужчина и 3 женщин) можно

Количество все возможных событий: C^4_{30}= \dfrac{30!}{26!4!}= 27405

Искомая вероятность P= \dfrac{2400}{27405} = \dfrac{160}{1827}\approx 0.09

Задание 4. Число испытаний: n=3, вероятность успеха - 0,8, вероятность неудачи - q=1-0.8=0.2. Искомая вероятность по формуле Бернулли:

P_3(2)=C^2_30.8^2\cdot0.2=0.384

Задание 5. F(x)=\begin{cases}
 & \text{ } 0,~~ x \leq 1 \\ 
 & \text{ } 0.1,~~1\ \textless \ x \leq 3 \\ 
 & \text{ } 0.1+0.1,~~3\ \textless \ x \leq 4 \\ 
 & \text{ } 0.3+0.2,~~4\ \textless \ x \leq 6 \\ 
 & \text{ } 0.3+0.5,~~6\ \textless \ x \leq 7 \\ 
 & \text{ } 1,~~x\ \textgreater \ 7 
\end{cases}~~\Rightarrow~~~~F(x)=\begin{cases}
 & \text{ } 0,~~ x \leq 1 \\ 
 & \text{ } 0.1,~~1\ \textless \ x \leq 3 \\ 
 & \text{ } 0.2,~~3\ \textless \ x \leq 4 \\ 
 & \text{ } 0.5,~~4\ \textless \ x \leq 6 \\ 
 & \text{ } 0.8,~~6\ \textless \ x \leq 7 \\ 
 & \text{ } 1,~~x\ \textgreater \ 7 
\end{cases}

Задание 6. В таблице вероятности сумма вероятностей должна равняться 1, то есть

0.2+0.4+P_3+0.1+0.1=1\\ \\ 0.8+P_3=1\\ \\ P_3=0.2

Вычислим математическое ожидание по определению M(X)=\displaystyle \sum x_ip_i

M(X)=2\cdot0.2+5\cdot0.4+8\cdot0.2+11\cdot0.1+17\cdot0.1=6.8

Дисперсия: 
   D(X)=\displaystyle \sum x_i^2p_i-(M(X))^2=\\ \\ =2^2\cdot0.2+5^2\cdot0.4+8^2\cdot0.2+11^2\cdot0.1+17^2\cdot0.1=18.36

Среднее квадратическое отклонение σ(x).

   \sigma (X)= \sqrt{D(X)}= \sqrt{18.36} \approx 4.285
1.какова вероятность того, что наудачу выбранное число от 10 до 60 кратно 4? 2.из ящика, в котором 1
4,4(80 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ