М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
shahriyorchikozb8ts
shahriyorchikozb8ts
01.08.2021 14:39 •  Математика

Береза на 3 м выше если высота березы на 7 м кокова высота ели

👇
Ответ:
alwina347
alwina347
01.08.2021
Берёза-7м
Ель-(7-3)м
1)7-3=4(М)-высота ели
ответ:4м
4,6(4 оценок)
Открыть все ответы
Ответ:
свайпер
свайпер
01.08.2021
Две стороны квадрата лежат на прямых и . Вычислить его площадь.

Даны две смежные вершины параллелограмма А(-1;3) и В(5;-1) и точка пересечения его диагоналей . Найти координаты двух других вершин параллелограмма.

Найти уравнение прямой, проходящей через точку М(1;4), и параллельной прямой, отсекающей на осях Ох и Оyотрезки равные соответственно  и.

В треугольнике с вершинами А (-5;1) , В(-2;2) и С (-3;-5) найти величину внутреннего угла B.

Даны вершины треугольника А (-1;6) , В(0;9) и С (8;3). Найти уравнение биссектрисы внутреннего угла A.

Вариант № 2

Даны уравнения оснований трапеции и . Вычислить её высоту.

Даны две вершины треугольника А(1;2),В(3;6) и точка пересечения медиан

М (2;3). Найти координаты третьей вершины С.

Найти уравнение прямой, проходящей через точку М(0;2), и перпендикулярной к прямой, отсекающей на осях Ох и Оуотрезки равные соответственно  и.

В треугольнике с вершинами А (-1;1) , В(3;2) и С (-4;-4) найти величину внутреннего угла В.

Даны вершины треугольника А (-3;1) , В(5;3) и С (-2;-3). Найти уравнение биссектрисы внутреннего угла А.

Вариант № 3

1. Две стороны квадрата лежат на прямых и . Вычислить его площадь.

Даны три последовательные вершины параллелограмма А(2;-2), В(6;2) и С(4,8). Найти координаты четвёртой вершин D.

Найти уравнение прямой, проходящей через точку М(3;2), и параллельной прямой, отсекающей на осях Ох и Оуотрезки равные соответственно  и.

В треугольнике с вершинами А (-1;2) , В (1; 6) и С (5;-2) найти величину внутреннего угла В.

Даны вершины треугольника А (-2;1) , В(1;2) и С (4;-7). Найти уравнение биссектрисы внутреннего угла В.

Вариант № 4

Даны уравнения оснований трапеции и . Вычислить её высоту.

Даны две вершины треугольника А(1;1),В(-3;5) и точка пересечения медиан. Найти координаты третьей вершины С.

Найти уравнение прямой, проходящей через точку М(3;1), и перпендикулярной к прямой, отсекающей на осях Ох и Оуотрезки равные соответственно  и.

В треугольнике с вершинами А (-5;-2) , В(-2;3) и С (4;-7) найти величину внутреннего угла В.

Даны вершины треугольника А (-4;-1) , В(-2;4) и С (2;-6). Найти уравнение биссектрисы внутреннего угла В.
4,8(29 оценок)
Ответ:
Angelina111555
Angelina111555
01.08.2021

ке можно расставить на остальных позициях дру-

гие книги можно расставить Поэтому согласно

правилу произведения вся расстановка книг, изображенная на рис 2.1,

может быть получена Чтобы получить все

требуемые условием задачи расстановки книг, нужно тройку книг по ма-

тематике переставить с 1-3 позиций на 2-4, 3-5,..,8-10 позиции, не изме-

няя порядок расположения книг внутри "математической" и "нематема-

тической" групп. Таких "сдвижек" будет 8, и для каждой такой "сдвижки"

возможна перестановка книг внутри "математической" и "нематематиче-

ской" групп Значит, общее число благоприятствующих

исходов равно k = 8k3 = 8 ⋅ 3!⋅7! . Вероятность события находим по форму-

ле (2.1) и получаем p = k/n = 8 ⋅ 3! ⋅ 7!/10! = 1/ 15 = 0 ,067 .

ответ: 0,067.

Пример 6. Пять мужчин и десять женщин случайным образом по

трое рассаживаются за 5 столиков. Какова вероятность того, что за каж-

дым столиком окажется мужчина?

Решение. Найдем сначала общее число исходов. За первый столик

могут сесть любые три человека из 15, такая посадка осуществляется За второй столик может сесть любая тройка из ос-

3

тавшихся 12 человек, такая посадка осуществляется Аналогично посадку за 3,4,5 столики можно осуществить Поэтому по правилу произведения

9 6 3

общее число исходов равно

n = n1 ⋅ n2 ⋅ n3 ⋅ n4 ⋅ n5 = C15 ⋅ C12 ⋅ C9 ⋅ C6 ⋅ C3 = 15! / 6 5.

3 3 3 3 3

Аналогично одного мужчину и две женщины за первый столик мож-

но посадить за второй, третий, четвертый, пятый

2

столики - соответственно бами. Значит, число благоприятствующих исходов равно

k = k1 ⋅ k 2 ⋅ k3 ⋅ k 4 ⋅ k5 = 5! ⋅ C10 ⋅ C8 ⋅ C6 ⋅ C4 = 5! ⋅ 10!/ 2 5 .

2 2 2 2

Следовательно,

k 5!⋅10! 15! 35 ⋅ 5!

p= = 5 : 5 = = 0 ,081.

n 2 6 15 ⋅ 14 ⋅ 13 ⋅ 12 ⋅ 11

ответ: 0,081.

2.1. В магазин поступило 30 новых телевизоров, среди которых 5

имеют скрытые дефекты. Найти вероятность того, что купленный телеви-

зор не имеет скрытых дефектов.

12

2.2. Игральная кость подбрасывается один раз. Найти вероятности

событий: A = {число очков на верхней грани равно 6}, B = {число очков

кратно 3}, C = {число очков меньше 5}.

2.3. Из колоды в 36 карт наугад вытаскивается одна. Найти вероят-

ности событий: A = {карта имеет масть "пик"}, B = {карта имеет черную

масть}, C = {вытащен туз}, D = {вытащен туз "пик"}.

2.4. Куб, все грани которого окрашены, распилен на 1000 кубиков

одинакового размера. Кубики перемешиваются, а затем наугад вытаски-

вается один из них. Найти вероятности событий: A = {кубик имеет

три окрашенные грани}, B = {кубик имеет две окрашенные грани}, C =

{кубик имеет одну окрашенную грань}.

2.5. На шахматную доску случайным образом ставят две ладьи: бе-

лую и черную. Какова вероятность того, что ладьи не бьют друг друга?

2.6. На 9 карточках написаны цифры от 1 до 9. Определить вероят-

ность того, что число, составленное из двух наугад взятых карточек, де-

лится на 18.

2.7. На 8 карточках написаны числа: 2,4,6,7,8,11,12,13. Из двух нау-

гад взятых карточек составлена дробь. Какова вероятность того, что она

сократима?

2.8. Одновременно подбрасывается две кости. Найти вероятности

событий: A = {количество очков на верхних гранях одинаково}, B = {на

верхних гранях выпадет в сумме 8 очков}, C = {сумма очков четна}, D =

{хотя бы на одной кости появится цифра 6}.

2.9. Телефонный номер состоит из 6 цифр. Некто забыл номер теле-

фона, но помнит, что он состоит из нечетных цифр. Какова вероятность

того, что номер будет угадан с первой попытки?

2.10. Поезд метро состоит из 6 вагонов. Какова вероятность того, что

3 пассажира сядут в один вагон?

2.11. Зенитная батарея, состоящая из n орудий, производит залп по

группе из m самолетов. Каждое орудие выбирает себе цель наудачу неза-

висимо от остальных. Найти вероятность того, что все орудия выстрелят

по одному самолету.

2.12. Пяти радиостанциям разрешено вести передачи на шести час-

тотах. Каждая радиостанция наудачу выбирает себе частоту. Найти веро-

ятности событий: A = {все радиостанции работают на одной частоте}, B

= {хотя бы две радиостанции работают на разных частотах}, C = {все ра-

диостанции работают на разных частотах}.

2.13. Числа 1,2,...,20 написаны на карточках. Карточки тщательно

перетасовываются, а затем вытаскиваются две из них. Какова вероят-

ность того, что сумма чисел на вынутых карточках равна 30?

2.14. Цветочница выставила на продажу 15 белых и 10 красных роз.

Некто подобрать ему букет из 5 роз. Какова вероятность того, что

в букете будет 2 белые и 3 красные

Пошаговое объяснение:

4,6(24 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ