М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ыаррауцйу
ыаррауцйу
04.12.2020 01:58 •  Математика

Для спортивной команды купили 45 маек и 27 футболок. какие наибольшее число спортсменов может быть в команде, если каждый получит одинаковый набор одежды и будут использованы все вещи. с объяснением, .

👇
Ответ:
Стася911
Стася911
04.12.2020
45 = 3 * 3 * 5
27 = 3 * 3 * 3
НОД (45 и 27) = 3 * 3 = 9 - наибольший общий делитель

45 : 9 = 5 маек
27 : 9 = 3 футболки
ответ: в команде 9 человек, каждому достанется по 5 маек и 3 футболки.
4,6(99 оценок)
Открыть все ответы
Ответ:
pycya2006
pycya2006
04.12.2020
Попробуем установить закономерность в значениях остатков от деления степеней на 9
1) степень 23
23/9=2(5), 23²/9=529/9=58(7), 23³=12167/9=1351(8), если продолжить возводить 23 в степень и вычислять остатки по получится следующая повторяющаяся последовательность остатков
a(n)={5,7,8,4,2,1,5,.. а дальше все повторяется}
a(1)=a(7)=a(13)=
a(n)=a(6n+1) - формула повторения
ближайшее к 34 число кратное 6 это 30,   34=6*5+4, определим какой у этой степени остаток от деления на 9 а следующие будут повторяться 
a(1)=a(6*5+1)=a(31)=5
a(2)=a(32)=7
a(3)=a(33)=8
a(4)=a(34)=4 
остаток от деления 23^34 на 9=4

2) аналогично рассуждая можно установить закономерность для 56^67
56/9=6(2), 56²/9=3136/9=348(4),56³/9=175616(8),  
получится повторяющаяся последовательность остатков
b(n)={2,4,8,7,5,1,2}
b(1)=b(7)=b(13),
b(n)=b(6n+1) 
67=6*11+1
b(1)=b(6*11+1)=2
остаток от деления 56^67 равен 2

(23^34+56^67)/9=(23^34/9)+(56^67/9)=x(4)+y(2) где х и у -целые части от деления степеней на 9
суммарный остаток=4+2=6

ответ 6
4,7(26 оценок)
Ответ:
СофикаКис
СофикаКис
04.12.2020
Решение делим на две части:
I. доказываем монотонный прирост и ограниченность
II. находим предел последовательности

Часть I:
монотонность доказываем по индукции:
Проверка: x_2=\sqrt{3\frac{3}{2}-2}=\sqrt{\frac{5}{2}}\ \textgreater \ \frac{3}{2}=x_1\ \Rightarrow x_2\ \textgreater \ x_1
Предполагаем справедливость неравенства для любого k\ \textless \ n+1
Доказываем для x_{n+1}:
x_{n+1}=\sqrt{3x_n-2}\ \textgreater \ \sqrt{3x_{n-1}-2}=x_n\ \Rightarrow x_{n+1}\ \textgreater \ x_n
Монотонный прирост доказан.

Ограниченность сверху:
x_n\ \textless \ 2\ \Rightarrow 3x_n\ \textless \ 6\ \Rightarrow3x_n-2\ \textless \ 4\ \Rightarrow\sqrt{3x_n-2}\ \textless \ 2\ \Rightarrow x_{n+1}\ \textless \ 2

Условие выполняется для x_1, по индукции получаем справедливость для любого x_n.
(x_{n+1}:=\sqrt{...}\ \Rightarrow x_{n+1}\geq 0, потому можно извлечь корень)
(*) Последовательность монотонна и ограниченна, следовательно сходится к супремуму.

Часть II.
Определим l:=\sup\{x_n\}_{n\in\mathbb{N}}. Из (*) следует:
\lim_{n\to\infty}x_n=l, но для больших n\in\mathbb{N} выполняется |x_{n+1}-x_n|\ \textless \ \epsilon (Коши), следовательно \lim_{n\to\infty}x_{n+1}=l
Подставялем в рекурсию и получаем:
\sqrt{3l-2}=l\ \Rightarrow l^2-3l+2=0\ \Rightarrow l_{1,2}\in\{1,2\}
Из монотонности и x_1=\frac{3}{2} следует l\neq 1.
Получаем: l=2

\lim_{n\to\infty}x_n=2

(**) Как я "угадал" верхний предел для доказательства ограниченности в первой части?
- Сначала решил часть II, и выбрал подходящее значение.
Важно помнить: без части I, часть II не имеет сысла!! Потому доказательство нужно предоставлять именно в таком порядке и в полном объёме.
4,4(53 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ