Чтобы решить уравнение нужно привести всё к общему знаменателю х 7 8 ___ - = х-2 х + 2 х² - 4
нижний знаменатель х² - 4 можно разложить по формуле разности квадрата. вы её наверняка проходили. получится (х-2)(х+2) всё уравнение имеет вид х 7 8 ___ - = х-2 х + 2 (х-2)(х+2) ну а теперь домножаем до одного знаменателя. в первом столбике умножим на (х+2), во втором на (х-2), а третий так и оставим. получится: х(х+2) - 7(х-2) - 8 = 0; (х-2)(х+2)
сверху получится х² - 5х + 6 = 0 находим через дискриминант. D = b² - 4ac; D = 25 - 4*6 = 25-24 = 1; х₁= -b + √D = 5 + 1
2a 2
x₁ = 3; х₂ = 5-1 ___ = 2 2
всё уравнение имеет вид (x-2)(x-3) = 0; (х-2)(х+2)
сократив дробь получим х-3 ___ = 0; х + 2 т.к. делить на ноль нельзя, то х+2 ≠0 х ≠ -2 ответ: х∋(-∞;-2)(-2;+∞) на самом деле это несложное уравнение, просто я пыталась как можно больше объяснить свои действия :)
a - длина прямоугольника
b - ширина прямоугольника
S=60 м²
a=12 м
b - ? м
Р - ? м
S=a·b ⇒ b=S:a=60:12=5 (м) - ширина прямоугольника.
Р=2(a+b)=2(12+5)=2·17=34 (м)
ответ: 34 метра периметр прямоугольника.