На середине отрезке ав возьмём точку о и проведём окружность радиусом ао=ов. тогда наша окружность пройдёт через точки м и n, т.к. по условию углы ∠amb = ∠anb = 90°.лучи bm и bn делят угол abc на три равные части меньше 45°. отсюда, равны углы ∠abn = ∠mbc, т.к. содержат в себе по две равные доли угла авс.углы ∠ban и ∠bmn опираются на одну и ту же дугу ∪bn, следовательно, эти углы равны: ∠ban = ∠bmn. значит, треугольники δban и δbmk подобны по двум углам, и угол ∠bkm = 90°, как ∠anb.найдём мк по теореме пифагора:  рассмотрим треугольник δmbk. биссектриса треугольника bn делит сторону на отрезки, пропорциональные прилежащим сторонам:с другой стороны, ранее мы нашли, что составляем систему уравнений и решаем:по теореме пифагора находим bn:
2^x/4^y=32|:2/4
2) x*3y=3
x/y=64
3) x=3/3y
x/y=64
4) x=1/y
x/y=64
Подставляем вместо x - 1/y, 1/y:y=64, 1/y^2=64, y^2=1/64, y=+-1/8.
y^2 - игрек в квадрате.